Abstract:
A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to dynamically control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.
Abstract:
A handheld computing device may include a housing having a base and a sidewall connected to a periphery of the base, the sidewall having an input/output port configured to accommodate connection to a peripheral device, and a retainer bracket connected to the housing and positioned proximate to the port. The retainer bracket includes a frame having a top plate and opposing side plates and being configured to secure a dock connector between the frame, the base, and the sidewall having the port.
Abstract:
A handheld communication device includes first and second screens, a hinge to rotate the first and second screens between open and closed positions, and a position sensor to determine the relative position of the first and second screens. The position sensor can be a Hall-Effect sensor.
Abstract:
A handheld communication device includes first and second screen assemblies, each including a screen having an active display area and housing having a rear surface, and a side surface extending between a periphery of the screen and the rear surface of the housing and a hinge connected to the first and second screen assemblies, whereby, when the hinge is in the fully opened position, the hinge is configured to enable a distance between the first and second active display areas to be no more than about 10 mm.
Abstract:
A handheld communication device includes first and second screen assemblies, each including a screen having an active display area and housing having a rear surface, and a side surface extending between a periphery of the screen and the rear surface of the housing and a hinge connected to the first and second screen assemblies, whereby, when the hinge is in the fully opened position, the hinge is configured to enable a distance between the first and second active display areas to be no more than about 10 mm.
Abstract:
A handheld computing device includes a screen to receive input from and provide graphical output to a user, a housing engaging a peripheral portion of the screen, a circuit board comprising a processor to execute machine readable instructions and control operation of the device and a computer readable medium to store the machine readable instructions, a flexible circuit connecting to a connector of the circuit board and to an electrical component of the device, a bracket, and a resilient gasket in physical contact with the bracket and connector and transferring pressure from the bracket to the flexible circuit at the connector, whereby the connection between the connector and flexible circuit is maintained during usage of the device.
Abstract:
A device recovers water from an ambient airstream. The device includes a chamber having a group of trays that hold respective amounts of liquid desiccant. A foam media element in each tray absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and control device operation. The desiccant trays may be selectively configurable in an array to best suit the intended installation. The trays may be arranged in column and row configurations, along with adjustable airflow patterns between each of the trays.
Abstract:
A handheld computing device may include a first screen having a first display, a second screen having a second display, and a hinge connected to the first and second screens. The hinge may include a plurality of axes to enable the first and second screens to rotate about distinct axes. The hinge may include a hub having an internal passage configured to electrically couple the first and second screens.
Abstract:
A method to recover water from the atmosphere is provided. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.
Abstract:
A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A media material absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. The configuration of the media material enables maximal water extraction and is dynamically configurable. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.