摘要:
An image sensor with an organic photoelectric film for converting light into charge may be provided. The image sensor may include an array of image sensor pixels. Each image sensor pixel may include a charge-integrating pinned diode that collects photo-generated charge from the photoelectric film during an integration period. An anode electrode may be coupled to an n+ doped charge injection region in the charge-integrating pinned diode and may be used to convey the photo-generated charge from the photoelectric film to the charge-integrating pinned diode. Upon completion of a charge integration cycle, a first transfer transistor gate may be pulsed to move the charge from the charge-integrating pinned diode to a charge-storage pinned diode. The charge may be transferred from the charge-storage pinned diode to a floating diffusion node for readout by pulsing a gate of a second charge transfer transistor.
摘要:
The present invention provides a junction gate photo-diode (JGP) pixel that includes a JGP accumulating charge in response to impinging photons. The JGP is positioned on a substrate and includes a top n layer, a middle p layer and a bottom n layer forming a n-p-n junction, and a control terminal coupled to the top n layer. Also includes is a floating diffusion (FD) positioned on the substrate and coupled to a pixel output line through an amplifier. Also includes is a pinned barrier (PB) and a storage gate (SG) positioned on the substrate between the JGP and the FD. The PB temporarily blocks charge transfer between the JGP and the FD, and the SG stores the accumulated charge from the JGP, and transfers the stored charge to the FD for readout.
摘要:
Methods, apparatus, and systems may operate to more efficiently utilize data stored in an array of storage blocks organized as rows and columns of contiguous blocks, where non-linearity is present in the data. Activities may include organizing data to discard useless elements from storage blocks when transferring the data to a memory buffer, and perhaps compressing the data for increased memory density utilization. Additional activities may include reconstructing data stored in the memory buffer and using an image distortion formula to display a linear representation of the non-linear data.
摘要:
The present invention relates to a backside illuminated (BSI) imager having a plurality of layers. A plurality of pixel sensors are positioned on a first layer of a substrate. Pixel select conductors are positioned on the substrate in front of the first layer. Pixel readout conductors including a plurality of output lines, pixel power conductors, and a ground conductor are positioned on the substrate in front of the pixel select conductors. A plurality of sample and hold capacitors coupled to the pixel output lines are positioned vertically and/or horizontally on the substrate in front of the ground conductor.
摘要:
Systems and methods are provided for obtaining adaptive exposure control and dynamic range extension of image sensors. In some embodiments, an image sensor of an image system can include a pixel array with one or more clear pixels. The image system can separately control the amount of time that pixels in different lines of the pixel array are exposed to light. As a result, the image system can adjust the exposure times to prevent over-saturation of the clear pixels, while also allowing color pixels of the pixel array to be exposed to light for a longer period of time. In some embodiments, the dynamic range of the image system can be extended through a reconstruction and interpolation process. For example, a signal reconstruction module can extend the dynamic range of one or more green pixels by combining signals associated with green pixels in different lines of the pixel array.
摘要:
An image sensor such as a backside illumination image sensor may be provided with analog circuitry, digital circuitry, and an image pixel array on a semiconductor substrate. Trench isolation structures may separate the analog circuitry from the digital circuitry on the substrate. The trench isolation structures may be formed from dielectric-filled trenches in the substrate that isolate the portion of the substrate having the analog circuitry from the portion of the substrate having the digital circuitry. The trench isolation structures may prevent digital circuit operations such as switching operations from negatively affecting the performance of the analog circuitry. Additional trench isolation structures may be interposed between portions of the substrate on which bond pads are formed and other portions of the substrate to prevent capacitive coupling between the bond pad structures and the substrate, thereby enhancing the high frequency operations of the image sensor.
摘要:
An image sensor may be provided having a pixel array that includes optical cavity image pixels. An optical cavity image pixel may include a photosensitive element in a substrate and a reflective cavity formed from a frontside reflector that is embedded in an intermetal dielectric stack, a backside reflector formed in a dielectric layer above the photosensor that partially covers the photosensor, and sidewall reflectors formed in the substrate between adjacent photosensors using deep trench isolation techniques. Each optical cavity image pixel may also include a light-guide trench above the photosensor that guides light into the reflective cavity for that pixel. Each optical cavity pixel may also include color filter material in the trench. Light that is guided into the reflective cavity by the light-guide trench may experience multiple reflections from the reflectors of the reflective cavity before being absorbed and detected by the photosensor.
摘要:
An array camera may be formed from an array of lenses, an array of corresponding apertures, and an array of corresponding image sensors. The array of apertures may be configured so that some image sensors receive light through apertures of different size than other image sensors. Providing apertures of smaller size increases the F/# of an array camera and increases the depth-of-field in a captured image. The array of image sensors may include a near-infrared image sensor. Providing an image sensor array with a near-infrared image sensor may enhance depth information in captured images or increase night vision capabilities of an array camera. Combining an array of image sensors that includes a near-infrared sensor with an array of apertures having different aperture diameters may allow increased depth-of-field imaging, enhanced extraction of depth information from an image, improved night vision, enhanced image clarity or other improvements.
摘要:
The invention describes a solid-state CMOS image sensor array and in particular describes in detail image sensor array pixels having global and rolling shutter capabilities that are using a dual channel transfer-storage gate for charge transfer from a PD to a TX gate well and from the TX gate well onto a FD. The dual channels are stacked above each other where a shallow charge channel is used to drain surface generated dark current away from the pixel structure, while a buried bulk channel provides for standard charge transfer and storage functions. This feature thus improves the sensor noise performance and prevents signal contamination and various shading effects caused by the dark current buildup during a prolonged charge storage sequence in pixels of image sensor arrays using the global shutter mode of operation. Several embodiment of this concept are described including pixels which utilize shared circuitry, a complete PD reset capability, and an efficient anti-blooming control.
摘要:
Adaptive local tone mapping may be used to convert a high dynamic range image to a low dynamic range image. Tone mapping may be performed on an on a Bayer domain image. A high dynamic range image may be filtered to produce a luminance signal. An illumination component of the luminance signal may be compressed. A reflectance component of the luminance signal may be sharpened. After the luminance signal has been processed, it may be used in producing an output image in the Bayer domain that has a lower dynamic range than the input image. The output Bayer domain image may be demosaiced to produce an RGB image. Tone-mapping may be performed with a tone-mapping processor.