Abstract:
An apparatus can include a controller; memory accessible to the controller; a bus operatively coupled to the controller; sensor circuitry operatively coupled to the bus where the sensor circuitry generates measurement information representative of an environmental condition; and where the controller determines codes, each of the codes representative of an individual operational state of the apparatus, and where the controller associates, in the memory, at least a portion of the measurement information with at least one of the codes.
Abstract:
A kit for determining if a shock treatment is required for a water source may comprise a test strip having at least two chemically treated test areas. One of the areas is responsive in color to a concentration of free chlorine in the water and another test area is responsive in color to a concentration of total chlorine in the water. A chlorine indicator scale may be provided on a substrate, such as a label, and comprises a plurality of pairs of colored indicia and each pair of colored indicia representing a color pattern indicating a concentration, or range of concentrations, of total chlorine and free chlorine in the water. An alphanumeric designation may be provided adjacent to each pair of indicia indicating whether a shock treatment is required for the water source based on a color pattern the associated indicia pattern.
Abstract:
An embodiment provides a permanent sealing assembly for a container, such as a reagent bottle. The permanent sealing assembly allows for drip-less reagent container exchange for liquid analysis instruments. The permanent sealing assembly may be integrated into a container, such as a reagent bottle, and provides an outflow tube that extends into the container. The permanent sealing assembly and the outflow tube thereof remain in the container such that, on an exchange of regent containers, a removable cap assembly of the liquid analysis instrument may be affixed to a new container of reagent without the risk of reagent from the old container contacting the surroundings. Other aspects are described and claimed.
Abstract:
An electronic device for analyzing an aqueous solution may comprise a housing, one or more measurement circuits and a control circuit all arranged inside the housing. The housing may be configured to receive a test element. The one or more measurement circuits may be configured to produce one or more corresponding sets of measurement signals relating to an aqueous solution received on the test element. The control circuit may include a memory having instructions stored therein that are executable by the control circuit to process the one or more sets of measurement signals to determine one or more corresponding characteristics of the aqueous solution.
Abstract:
One embodiment provides an annular optical device (100), comprising: an annular meso-optic (1) including an annulus (11) centered about an axis of revolution (A); and a secondary optical structure (2) substantially coaxial within the annulus (11) of the annular meso-optic (1), wherein the secondary optical structure (2) and the annular meso-optic (1) are separated by a media (12) comprising a media refractive index that is lower than a secondary optical structure refractive index, with the secondary optical structure (2) being configured to hold a specimen to be radiated by impinging electromagnetic radiation directed into the secondary optical structure (2) substantially along the axis of revolution (A), wherein re-directed radiation from the specimen is allowed into the annular meso-optic (1) by the secondary optical structure (2) if an angle of incidence of the re-directed radiation exceeds the angle of Total Internal Reflectance. Other embodiments are described and claimed.
Abstract:
A multiple-electrode ion meter (100) is provided. The multiple-electrode ion meter (100) includes meter electronics (102) configured to receive a plurality of ionic concentration voltage measurements and generate an ionic concentration measurement from the plurality of ionic concentration voltage measurements and three or more individual electrode units (108) in communication with the meter electronics (102). The three or more electrode units (108) generate the plurality of ionic concentration voltage measurements to the meter electronics (102).
Abstract:
An embodiment provides a cuvette apparatus including: a lid and a body, the body including a fluid channel disposed therein; and the lid including at least one opening aligned with a portion of the fluid channel, thereby providing access to the fluid channel in the body. Other aspects are described and claimed.
Abstract:
A differential pH probe design uses a container having an outer surface and an inner volume, where the inner volume is divided into a first chamber and a second chamber. A first pH-sensitive area is located on the outer surface of the first chamber where the first pH-sensitive area is configured to be exposed to a sample. A second pH-sensitive area is located on the outer surface of the second chamber where the second pH-sensitive area is shielded from the sample and is exposed to a buffer solution. A first electrode is configured to detect a first voltage in the first chamber and a second electrode is configured to detect a second voltage in the second chamber. Circuitry is coupled to the first and second electrodes and configured to process the first voltage and the second voltage to determine a pH of the sample.