Abstract:
A pointing device that does not limit an operator by personal physical characteristics is structured as follows. An apparatus incorporating a pointing device includes a fingerprint sensor obtaining image information, a cover protecting a sensor surface, and a sensor presser arranged at a face of the cover on the sensor side so as to be in contact with the sensor surface. The shape of sensor presser obtained with sensor changes by the position on cover being pressed by a finger, and an input is performed based thereon.
Abstract:
A language processing apparatus, a language processing method, and a program capable of assisting a user or the like in accounting for the result of language processing are provided. A language processing apparatus includes a unique expression extraction unit configured to extract a unique expression related to medical care from text information, and a language processing unit configured to perform language processing related to medical care based on the unique expression.
Abstract:
A nanoribbon includes a structure represented by a structural formula (8), where g, p, q, r, s, t, and u are mutually independent and are integers greater than or equal to 1, R1, R2, R3, R4, R5, R6, R7, and R8 are mutually independent and are one of a hydrogen atom, a substituent, an alkyl moiety, a phenyl moiety, and a halogen atom, and A denotes a hydrogen atom or an aryl group.
Abstract:
A nanoribbon includes a structure represented by a structural formula (8), where g, p, q, r, s, t, and u are mutually independent and are integers greater than or equal to 1, R1, R2, R3, R4, R5, R6, R7, and R8 are mutually independent and are one of a hydrogen atom, a substituent, an alkyl moiety, a phenyl moiety, and a halogen atom, and A denotes a hydrogen atom or an aryl group.
Abstract:
To provide a method whereby viscoelasticity of an object can be measured nondestructively and in non-contact fashion in a short time. By this method, elastic waves and light are radiated to an object and the viscoelasticity of an object is measured nondestructively and in non-contact fashion using a shadow change based on a change in the direction of a line normal to the surface of the object. Specifically, the present invention has an elastic wave transmission step for pressurizing or exciting the object by elastic waves and causing a minute displacement of the object surface shape, a photoirradiation step for radiating light to the minutely displaced object surface, an image acquisition step for acquiring a shadow change based on a change in the direction of a line normal to the object surface, and a viscoelasticity estimation step for processing an image of the acquired shadow change and calculating a viscoelasticity.
Abstract:
A nanoribbon includes a structure represented by a structural formula (8), where q, p, q, r, s, t, and u are mutually independent and are integers greater than or equal to 1, R1, R2, R3, R4, R5, R6, R7, and R8 are mutually independent and are one of a hydrogen. atom, a substituent, an alkyl moiety, a phenyl moiety, and a halogen atom, and A denotes a hydrogen atom or as aryl group.
Abstract:
The present invention provides a method for manufacturing a dopant composition-nanomaterial composite, which method makes it possible to simply and efficiently change a Seebeck coefficient value of a nanomaterial. This manufacture method of the present invention includes the steps of: (a) putting a dopant composition in contact with a nanomaterial in a solvent; (b) drying a mixture obtained in the step (a) so as to remove the solvent, the dopant composition containing a given anion and an onium ion.
Abstract:
A thin film transistor having a high operation speed with a field effect mobility greater than 20 cm2/Vs and a method for manufacturing the same, and a semiconductor device having the same are provided. A thin film transistor in which a gate electrode, a gate insulating film and an oxide semiconductor film are laminated on a substrate, a source region and a drain region are respectively formed in outer portions of the oxide semiconductor film in the width direction, and a channel region is formed in a region between the source region and the drain region; and a source electrode is connected to the source region, while a drain electrode is connected to the drain region. The gate insulating film contains fluorine; and the ratio of the width W of the channel region to the length L thereof, namely W/L is less than 8.
Abstract:
The present invention provides a method for manufacturing a dopant composition-nanomaterial composite, which method makes it possible to simply and efficiently change a Seebeck coefficient value of a nanomaterial. This manufacture method of the present invention includes the steps of: (a) putting a dopant composition in contact with a nanomaterial in a solvent; (b) drying a mixture obtained in the step (a) so as to remove the solvent, the dopant composition containing a given anion and an onium ion.
Abstract:
In an abnormal driving behavior detection system for a vehicle, an obtainer repeatedly obtains an observed value indicative of at least one of a running condition of the vehicle and a driver's driving operation of the vehicle. A mode-probability calculator calculates, each time an observed value is obtained at a given obtaining timing as a target obtained value, a mode probability for each of driving modes as a function of one or more previous observed values. A deviation calculator obtains a predicted observed value for each driving mode using a driver's normal behavior model defined therefor, and calculates a deviation of the target observed value from the predicted observed value for each driving mode. An abnormality determiner determines whether there is at least one driver's abnormal behavior based on the mode probability for each driving mode and the deviation calculated for each driving mode.