Abstract:
The present disclosure provides a system and method of monitoring a mooring system for a floating vessel using the time of the natural period independent of environmental conditions. The natural period can be calculated and/or established experientially over time by measuring movement of the vessel to establish the natural period at given geographical positions of a secure and intact mooring system. The natural period can be monitored based on the time to complete a natural period. A change in a mooring line stiffness, whether by a failure, stretching, a degradation of the mooring line integrity, or a significant displacement of the anchoring point, will be translated into a different natural period with a different time. By monitoring the natural period for a given geographical position (and corresponding heading) to be compared to the theoretical values (and/or previous recorded values) it is then possible to assess that at least a portion of the mooring system has failed or that a significant damage has occurred.
Abstract:
This element includes a plurality of longitudinal carbon fiber filaments (52) and a polymeric matrix (50) receiving the filaments (52) for binding them together, the matrix (50) forming a ribbon intended to be wound around a longitudinal body of the flexible line. The armor element (42) includes at least one optical fiber (54) received in the matrix (50), the optical fiber (54) having an elongation at break of more than 2%, as measured with the ASTM-D 885-03 standard.
Abstract:
A method of installing a plurality of pin piles into a seabed including at least the steps of: (a) lowering a pin pile apparatus comprising a first pin pile and an attached clump weight towards the seabed; (b) allowing the first pin pile to self-penetrate the seabed based on self-weight of the pin pile apparatus and the momentum from step (a) until the clump weight reaches the sea bed; (c) disconnecting the clump weight from the first pin pile; and (d) recovering the clump weight for use with a second pin pile and repeating steps (a)-(c). In this way, the pin piles are easily installed from their descent to the seabed with the clump weight, which can then be removed and applied to the next pin pile in an easy and repeatable operation without requiring a suction apparatus or hammer or drill.
Abstract:
An umbilical for use in the offshore production of hydrocarbons, the umbilical comprising a plurality of functional elements contained within an outer sheath, at least one of said functional elements comprising a multicore electric cable, said multicore electric cable comprising a plurality of insulated electric conductors electrically insulated from each other and assembled together in a helical or S/Z manner, said multicore electric cable further comprising a protective polymer sheath surrounding said plurality of insulated electric conductors, said multicore electric cable further comprising a tubular metallic layer located inside said protective polymer sheath and surrounding said plurality of insulated electric conductors.
Abstract:
A connection assembly allowing a pipe (12) extending from the seabed (14) to be connected to a flexible pipe (26) leading to the sea surface (22). The assembly includes a turret (32) having an upper end (42) connected to a float (20) and a lower end (40) connected to the pipe (12). The turret (32) has a duct (50) extending towards the upper end (42) and having a free end (66) provided with an end fitting (68). The turret includes retaining members (70, 72, 74, 76) that keep the connector (30) between the turret and the end fitting, facing the end fitting (68). The connector (30) is in a fixed position in relation to the retaining members (70, 72, 74, 76) and a drive device (112) drives the end fitting (68) toward the connector (30).
Abstract:
Burner for a furnace comprising at least one supply channel for supplying an oxidizing medium and a plurality of peripheral fuel supply channels, wherein the channels have exit openings arranged adjacent each other at a burner end surface for forming during use upon reaction of supplied fuel with supplied oxidizing medium a flame front, wherein the exit openings are asymmetrically arranged with respect to any plane arranged transverse to the end surface of the burner and extending through a burner central axis whereby the distribution of the fuel exit openings and/or the dimension of the fuel exit openings and/or the exit angle of the fuel exit openings and/or the shape of the fuel exit openings are arranged asymmetrically to said any plane, such that during use a flame front is created that is asymmetrical with respect to said any plane.
Abstract:
A vessel launch and retrieval system and method are disclosed with a cage that can surround a vessel and variable elevation float. The variable elevation float allows the vessel in the cage to be guided throughout the process of launch and retrieval, because the cage moves in elevation relative to the float. On launch, the cage with the vessel surrounded by the cage members can be lowered into the water until the vessel is floating above the surrounding members sufficiently to allow the vessel to exit the cage. The variable elevation float guides the vessel as it enters the water and continues to guide as the vessel begins to float and finally clears the surrounding members. Retrieval can generally reverse the process.
Abstract:
A recovery system and method for recovering a deployed vessel having a rotatable support coupled with a stored recovery assembly, including a release unit, line, deployment weight, and drag device on the deployed vessel. A recovery vessel can have a hoist with a coupling element, such as a grapple. For recovery, the recovery assembly can be deployed from the deployed vessel. The drag device can assist in floating and/or maintaining a taut line, especially when the vessel is downwind of the drag device. The coupling element from the recovery vessel can couple with the taut line. Once coupled, the recovery vessel can raise the coupling element with the line, which can rotate the rotatable support to a lifting position above a center of gravity of the deployed vessel. The recovery vessel can then lift the deployed vessel vertically out of the water to a storage position.
Abstract:
A marine pipeline-installation tower comprising at least two opposing legs, and one or more tensioning assemblies supported by the opposing legs for surrounding and supporting an intermediate pipeline during installation, at least one of the intermediate tensioning assemblies comprising two or more discrete segments, the segments being moveable between: a closed position wherein the segments are conjoined to form an enclosing pipeline annulus able to support the pipeline between the legs of the tower; and an open position wherein at least two of the segments are disconnected and separate. In this way, a better clearance is achievable between the parts of the segments able to form the enclosing pipeline annulus when the segments are in their open position, because the segments are able to be disconnected and separate despite still being supported within the limited room between the fixed legs of the tower.
Abstract:
A floating offshore platform is disclosed with one or more extension plates fixedly coupled to one or more pontoons on the offshore platform and extending from the pontoons. As the floating platform moves, the pontoon-coupled extension plates separate the water and cause drag on the platform. The water moving with the extension plates also increases the dynamic mass. The added drag and dynamic mass increases the natural period of the motion away from the wave excitation period to minimize the wave driven motion compared to a platform without the extension plates. The extension plates can be coupled to the pontoons during fabrication at the yard directly or through frame members. The extension plates generally are generally located inclusively between the top and bottom elevations of the pontoons, and therefore do not significantly reduce the clearance between the seabed and the hull at the quayside.