Abstract:
The present invention relates to an expansible hollow part, having at least one opening, which consists of an elastic biocompatible material and which comprises at least one biologically active substance and, optionally at least one matrix compound. The invention also provides a method of producing said expansible hollow part, a medical device covered at least partially with said hollow part, a kit-of-parts comprising said hollow part of the invention and the use of said hollow part as a therapeutic device and for protecting a medical device.
Abstract:
One aspect of the invention is directed to a balloon catheter with a multilayered polymeric sleeve at the rapid exchange intermediate section, having an outer layer formed of a polymer with a relatively low processing temperature (i.e., melting temperature for semi-crystalline polymers or glass transition temperature for amorphous polymers), and having an inner layer.
Abstract:
An angioplasty catheter and method for making and using the same. An angioplasty catheter comprises an inner tube having a proximal end, a distal end, and a lumen extending therethrough; an outer tube disposed over the inner tube, the outer tube having a proximal end and a distal end; a balloon coupled to the distal end of the outer tube; an inflation lumen defined between the inner tube and the outer tube, the inflation balloon in fluid communication with the balloon; and a support block coupled to the inner tube. In addition, a method for manufacturing an angioplasty catheter is disclosed.
Abstract:
A catheter assembly comprises an elongate shaft having a proximal end and a distal end. The assembly also comprises a flexible distal tip having a proximal end coupled to the distal end of the elongate shaft and having a distal end. The flexible distal tip has at least one groove in a surface thereof.
Abstract:
A balloon catheter for medical treatments easily manufacturable at low cost by a rather simple structure by providing a smaller diameter non-profile balloon catheter by eliminating the need for adhesion and welding of a balloon and eliminating extra profile at a connection part between the balloon and a shaft, wherein PTFE may be used for the shaft, and silicone may be used for the balloon. A inside hollow shaft (3) formed of a balloon material is inserted into an outside hollow shaft (2) formed of a shaft material, and the tip part of the inside hollow shaft (3) is projected from the tip end of the outside hollow shaft (2) to manufacture a double-tube catheter shaft (2). An expandable balloon (5) is formed of the projected portion of the inside hollow shaft (3), a cap (4) is fitted to the tip of the inside hollow shaft (3), and the PTFE is used for the outside hollow shaft (2), with the silicone used for the inside hollow shaft (3).
Abstract:
An apparatus and method for molding balloon catheters is disclosed. The balloon may be molded by providing a polymeric tube within a mold having an interior cavity in the shape of the desired balloon. Microwave energy, which may be generated by a gyrotron, may then be directed toward the mold, to heat the polymeric material without heating the mold. Once heated, pressurized fluid may be injected into the tube to blow the polymeric material against the interior cavity whereupon the material can cool to form the balloon or can be further heatset by additional microwave energy and be cooled to form the balloon. In accordance with one embodiment, microwave energy can also be used without a mold to form a medical device. A polymer extrusion apparatus is disclosed utilizing a microwave energy for heating polymer feedstock material within the extruder tip and die unit just prior to formation of the extrudate product. A cooling bath mechanism, which in one embodiment can also include a cooling tube member having a cooling medium forced therethrough, is also disclosed. An apparatus for preparing polymer disk members, to use as the polymer feedstock material for the microwave extrusion apparatus, is also disclosed. Apparatus for interconnecting and rotating the polymer disk members, the die tip, or the die, or any combination thereof, for creating angularity characteristics in the polymer extrudate, is also disclosed.
Abstract:
Microcatheters catheters are provided having balloons incorporating radiopaque nanoparticles. Optionally, carbon nanotubes dispersed within the shaft may be configured to react to electrical stimulation, thereby providing a steerable distal end region on the microcatheter. Methods of making the foregoing microcatheters also are provided.
Abstract:
A process for producing a catheter having a head, a shaft, a distal end, and a tip member wherein the tip member is secured onto the distal end of the catheter during production of the tip member. Another embodiment of the present invention is directed to a process for producing a catheter. The process including providing a catheter with a proximal end, a shaft, an interior, an exterior, and a distal end; and producing a balloon member having a proximal end and a distal end; wherein the distal end of the balloon member is attached to the distal end of the catheter during production of the balloon member.
Abstract:
An apparatus for molding balloon catheters is disclosed. The balloon may be molded by providing a polymeric tube within a mold having an interior cavity in the shape of the desired balloon. Microwave energy, which may be generated by a gyrotron, may then be directed toward the mold, to heat the polymeric material without heating the mold. Once heated, pressurized fluid may be injected into the tube to blow the polymeric material against the interior cavity whereupon the material can cool to form the balloon or can be further heatset by additional microwave energy and be cooled to form the balloon.