Abstract:
Micromachined ultrasonic transducers formed in complementary metal oxide semiconductor (CMOS) wafers are described, as are methods of fabricating such devices. A metallization layer of a CMOS wafer may be removed by sacrificial release to create a cavity of an ultrasonic transducer. Remaining layers may form a membrane of the ultrasonic transducer.
Abstract:
A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Abstract:
A miniature rangefinder includes a housing, a micromachined ultrasonic transducer, and signal processing circuitry. The housing includes a substrate and a lid. The housing has one or more apertures and the micromachined ultrasonic transducer is mounted over an aperture. The micromachined ultrasonic transducer may function as both a transmitter and a receiver. An integrated circuit is configured to drive the transducer to transmit an acoustic signal, detect a return signal, and determine a time of flight between emitting the acoustic signal and detecting the return signal.
Abstract:
A capacitive micromachined ultrasonic transducer (CMUT) and methods of forming the same are disclosed herein. In one implementation, the CMUT comprises a glass substrate having a cavity; a patterned metal bottom electrode situated within the cavity of the glass substrate; and a vibrating plate comprising at least a conducting layer, wherein the vibrating plate is anodically bonded to the glass substrate to form an air-tight seal between the vibrating plate and the substrate and wherein a pressure inside the cavity is less than atmospheric pressure (i.e., a vacuum). In another implementation, the CMUT comprises a glass substrate with Through-Glass-Via (TGV) interconnects, wherein a metal electrode is electrically connected to a TGV and wherein said metal electrode can be in the bottom of a cavity of the glass substrate or on the vibrating plate.
Abstract:
Described herein is a multifunctional case that can be used for protecting and preventing unauthorized use of different types and sizes of objects, weapons, firearms, or other items. In one embodiment, the multifunctional case includes a first shell and a second shell that is coupled to the first shell. A locking mechanism is coupled to the first shell. An external handle (e.g., handle that is external to the multifunctional case) is coupled to the locking mechanism and causes the locking mechanism to lock and unlock the first and second shells of the multifunctional case based on movement of the handle. The multifunctional case is securely locked and unlocked with no external clips or latches.
Abstract:
A micromachined ultrasonic transducer (MUT) circuit, which has a MUT with a MUT membrane that can vibrate back and forth to transmit an ultrasonic wave, electrically controls the movement of the MUT membrane by controllably transferring energy to the MUT membrane, thereby allowing the MUT membrane to transmit substantially any desired ultrasonic wave.
Abstract:
An ultrasonic imaging system is described in which a column-row-parallel architecture is provided at the circuit level of an ultrasonic transceiver. The ultrasonic imaging system can include a N×M array of transducer elements and a plurality of transceiver circuits where each transceiver circuit is connected to a corresponding one transducer element of the N×M array of transducer elements. A shared pulser gate driver and a shared VGA is provided for each row and column. Selection logic includes row select, column select, and per-element bit select. Through the column-row-parallel architecture, a variety of aperture configurations can be achieved.
Abstract:
A first controller can have a greater number of output lines than a second controller has input lines. The first controller can receive an ultrasonic transducer control signal and provide a first portion of the control signal to the first processor, where the length of the first portion is less than or equal to the number of input lines of the second processor. The first processor can send portions of the control signal to a plurality of second processors. Each of the plurality of second processors can have a number of input lines less than the number of output lines of the first processor. Portions of the control signal can be sent through the output lines of the first processor to the plurality of second processors at substantially the same time.
Abstract:
A micromachined ultrasonic transducer (MUT) circuit, which has a MUT with a MUT membrane that can vibrate back and forth to transmit an ultrasonic wave, electrically controls the movement of the MUT membrane by controllably transferring energy to the MUT membrane, thereby allowing the MUT membrane to transmit substantially any desired ultrasonic wave.
Abstract:
A multi-level transmitter circuit with substantially constant output impedance has a capacitive transducer connected between a voltage input and ground. A first voltage path connects the voltage input to a first positive voltage source. The first voltage path is controlled by a first control signal. A second voltage path connects the voltage input to a second positive voltage source, less than the first positive voltage source. The second voltage path passes through a diode and is controlled by a second control signal. A third voltage path connects the voltage input to a third voltage source, less than ground, and is controlled by the second control signal. The impedance at the voltage input during the first control signal is substantially the same as the impedance at the voltage input during the second control signal.