摘要:
A dividing apparatus is provided with a second camera that forms a second image to be used for determining whether or not a wafer is divided at a first projected dicing line. That is, in the dividing apparatus, whether or not the wafer is divided at the first projected dicing line can be checked in reference to the second image. Hence, in the dividing apparatus, even in a case where part of the wafer remains at the first projected dicing line and the wafer is not divided, a dividing unit can be operated again to divide the wafer at the first projected dicing line. Consequently, in the dividing apparatus, the wafer can reliably be divided at the first projected dicing line.
摘要:
Slices are cut from workpieces using a wire saw having a wire array tensioned in a plane between two wire guide rollers each supported between fixed and floating bearings and comprising a chamber and a shell enclosing a core and having guide grooves for wires. During a cut-off operation, a workpiece is fed through the wire array perpendicular to a workpiece axis and the wire array plane. The workpiece is fed through the wire array while simultaneously: changing shell lengths by adjusting chamber temperatures in dependence on a depth of cut and a first correction profile; and moving the workpiece along the workpiece axis in accordance with a second correction profile. The correction profiles are opposed to a shape deviation.
摘要:
A pressing head of the ingot slicing apparatus includes: a head main body in which a plurality of pneumatic supply ports configured to supply compressed air are formed so that pressure on each portion of the pressing head is separately controlled; pressing units installed on a lower end of the head main body, located to correspond to the pneumatic supply ports, and each configured to apply pressure to a side surface of an ingot by the compressed air supplied through each of the pneumatic supply ports; pneumatic correction units each installed on a lower surface of each of the pressing units and configured to control a pressure deviation between the plurality of pressing units; an adhesive plate installed to be in contact with lower side surfaces of the pneumatic correction units so that a lower surface of the adhesive plate is in direct contact with and presses the side surface of the ingot; and a coupling support unit configured to couple and support the head main body, the pressing units, the pneumatic correction units, and the adhesive plate.
摘要:
In accordance with the following step of a method of manufacturing a MOSFET, a first cutting step of cutting a silicon carbide wafer along a plane substantially parallel to a {11-20} plane is performed. After the first cutting step, a second cutting step of cutting the silicon carbide wafer along a plane substantially perpendicular to the {11-20} plane and substantially perpendicular to the first main surface is performed.
摘要:
A workpiece cutting method of cutting a workpiece having a front side on which a plurality of crossing division lines are formed to define a plurality of separate regions where a plurality of devices are each formed is disclosed. The workpiece cutting method includes a workpiece cutting step of cutting the workpiece held on a first chuck table along the division lines by using a cutting blade, a dummy wafer cutting step of cutting a dummy wafer held on a second chuck table by using the cutting blade, a dummy wafer imaging step of imaging a cut groove formed on the dummy wafer in the dummy wafer cutting step, by using an imaging unit to thereby obtain a detected image, and a determining step of determining the condition of the cutting blade from the condition of chippings formed on both sides of the cut groove in the detected image.
摘要:
A method for slicing wafers from a workpiece includes providing wire guide rolls that each have a grooved coating with a specific thickness, providing a fixed bearing respectively associated with each wire guide roll and providing a sawing wire including wire sections disposed in a parallel fashion. The wire sections are tensioned between the wire guide rolls and are moved relative to the workpiece so as to perform a sawing operation. The wire guide rolls cooled and the fixed bearings are cooled independently of the wire guide rolls.
摘要:
Systems and methods are disclosed for controlling the surface profiles of wafers cut in a wire saw machine. The systems and methods described herein are generally operable to alter the nanotopology of wafers sliced from an ingot by controlling the shape of the wafers. The shape of the wafers is altered by changing the temperature and/or flow rate of a temperature-controlling fluid that comes in contact with the ingot. Different feedback systems can be used to determine the temperature of the fluid necessary to generate wafers having the desired shape and/or nanotopology.
摘要:
Methods are disclosed for controlling the displacement of bearings in a wire saw machine. The systems and methods described herein are generally operable to alter the nanotopology of wafers sliced from an ingot by controlling the shape of the wafers. The shape of the wafers is altered by controlling displacement of bearings in the wire saw by changing the temperature and/or flow rate of a temperature-controlling fluid circulated in fluid communication with bearings supporting wire guides of the saw. Different feedback systems can be used to determine the temperature of the fluid necessary to generate wafers having the desired shape and/or nanotopology.
摘要:
A wire saw device for sawing semiconductor material is provided, the wire saw device comprising a wire guide device (110) adapted to guide a wire for forming at least one wire web (200) for sawing the semiconductor material, and at least one wire management unit (130) for providing a wire to the wire guide device, wherein the wire guide device (110) and the at least one wire management unit (130) are adapted to provide the at least one wire web such that an effective cutting area rate of 12 m2/h or more is provided.
摘要:
A multi-wire slurry-free wafer cutting apparatus along with a method for optimizing saw operation is disclosed that includes a cutting wire impregnated with a plurality of cutting particles wrapped multiple times around two or more wire guides to form a multi-wire web. A drive mechanism drives the web across an ingot at an optimum speed determined by setting a multi-wire web speed to an initial speed, detecting vibration of the web, identifying the web speed having a lowest vibration, and operating the drive mechanism at that speed as optimum. A cleansing fluid is applied to the multi-wire web that includes a major portion of water and a minor portion of surfactant which cleans the cutting wire and keeps the cut particles free of oxidation. One or more cleansing fluid applicators are configured to apply the cleansing fluid to the multi-wire web close to the ingot in a laminar flow.