Abstract:
Innovative new systems and method of operating the systems, wherein the system comprises an airborne platform comprising an unmanned balloon; a payload that is separate from the unmanned balloon; a transceiver; a flight termination device; at least two separate power sources; a sensor; a processor; a pump; a valve; and an object that when broken separates the unmanned balloon and the payload, are disclosed herein.
Abstract:
In one example, a long endurance airship system includes a first combined airship with a payload airship and a first logistics airship. The first combined airship is configured for stationkeeping at a predetermined station during meteorological conditions with wind speeds below a predetermined threshold. The airship system also includes a second combined airship which is a reconfiguration of the first combined airship and includes the payload airship and a second logistics airship. The second combined airship is configured for stationkeeping at the predetermined station in all meteorological conditions, including meteorological conditions with wind speeds above the predetermined threshold.
Abstract:
Systems and methods for detecting an unmanned aerial vehicle (UAV). Network access (for example, to the Internet) may be provided by detecting a UAV and fixing one or more beams from one or more ground terminals to the UAV. In one embodiment, the detection of a UAV includes forming and pointing beams from a ground terminal and ground gateways toward the UAV. The ground terminal may be configured to autonomously steer its antenna beam during initial installation to detect the reference signal from a UAV. In one variant, the ground terminals are steered to more finely track the position of the UAV based on a signal quality metric such as received signal strength and the UAV real-time position location coordinates. In one embodiment, the ground terminal antenna is initially manually pointed toward the UAV, and thereafter allowed to automatically steer to track the position of the UAV. In another embodiment the UAV antenna is steered toward a ground terminal using signal quality received from the ground terminal and real-time position coordinates and orientation of the UAV.
Abstract:
Modern farming is currently being done by powerful ground equipment or aircraft that weigh several tons and treat uniformly tens of hectares per hour. Automated farming can use small, agile, lightweight, energy-efficient automated robotic equipment that flies to do the same job, even able to farm on a plant-by-plant basis, allowing for new ways of farming. A hybrid airship-drone has both passive lift provided by a gas balloon and active lift provided by propellers. A hybrid airship-drone may be cheaper, more stable in flight, and require less maintenance than other aerial vehicles such as quadrocopters. However, hybrid airship-drones may also be larger in size and have more inertia that needs to be overcome for starting, stopping and turning.
Abstract:
Example methods and systems for performing fleet planning based on coarse estimates of regions is provided. A method may include receiving information indicative of a sequence of coverage requirements for a region over a period of time. For one or more time intervals of the period of time, the method may include dividing the region over which vehicles of the plurality of vehicles may traverse into a plurality of sub-regions such that for each subsequent time interval a size of a given sub-region increases. The method includes at each of the one or more time intervals of the period of time, determining vehicles of the plurality of vehicles that can reach a given landmark in a given sub-region by an end of the one or more time intervals, and based on the sequence of coverage requirements, generating a fleet plan for the time intervals based on the determined vehicles.
Abstract:
The invention relates to a drone comprising: two contra-rotating annular propellers (2, 4) defining a plane therebetween which is referred to as an equatorial plane and is assumed to be horizontal, means for driving the propellers, a load arranged below the equatorial plane, and means (20) for moving the load relative to the equatorial plane, an enclosure referred to as an upper enclosure (6) filled with a gas or a gaseous mixture having a density of less than 1 and arranged essentially above the equatorial plane, and an enclosure referred to as a lower enclosure (8) filled with a gas or a gaseous mixture having a density of less than 1 and arranged essentially below the equatorial plane, the load being placed inside the lower enclosure.
Abstract:
Aspects of the disclosure relate to filling and lifting high altitude balloons. For instance, one example system for lifting and filling a balloon having a balloon envelope includes an apparatus for use with the balloon envelope. The apparatus includes a load line, a fill tube having a hollow portion nested within the load line and a termination member attached to the fill tube and load line. The load line is configured to lift the balloon envelope during inflation. The fill tube extends through the load line and is configured to allow lift gas to pass through the hollow portion. The termination member is configured to mate with an opening in the balloon envelope so that lift gas can pass through the hollow portion of the fill tube and into the opening in the balloon envelope.
Abstract:
Embodiments of methods and apparatus for providing distributed airborne wireless communications are provided herein. In some embodiments, a communication fleet includes: an airborne communication payload subdivided into multiple payload sections; and a plurality of airborne platforms each including a payload section, wherein each airborne platform comprises an airframe, a propulsion system, a power system, and flight control electronics, wherein the propulsion system is configured to provide propulsion power and thrust to maintain level flight, ascend, descend and maneuver the airborne platform, wherein the power system provides electrical power to the propulsion system, the flight control electronics, and the payload section, and wherein the flight control electronics provide capability to control a position, speed, and flight pattern of the airborne platform.
Abstract:
Provided is an aircraft having a spherical body which generates buoyancy or which may generate buoyancy when filled with gas, wherein the aircraft further comprises four actuation units arranged on the surface of the body for movement of the aircraft in a translation and/or rotation through air, and at least one camera arranged on or in the surface of the body. Further provided is a method for providing optical information to a person in the environment of a flying aircraft, a method for providing optical information about an object and/or surveying of an object, a method for transmission of acoustic information and a method for observing or tracking an object.
Abstract:
Systems and methods to launch an aircraft are disclosed. In one embodiment, a system comprises an electrically powered buoyant aircraft, a control system to maneuver the aircraft and a tether adapted to couple to the aircraft and to a ground-based power supply to provide power to the aircraft while the aircraft is coupled to the tether, wherein the aircraft can disconnect autonomously from the tether in response to a command signal. Other embodiments may be described.