Abstract:
A method of treating or refining a wax includes hydrogenating a feed wax which has an MEK-solubility oils content of more 0.5 weight % to provide a hydrogenated wax. Thereafter the hydrogenated wax is de-oiled to reduce the MEK-solubility oils content of the hydrogenated wax, producing a refined wax or a wax product.
Abstract:
The present invention provides a paraffin wax having a congealing point according to ASTM D938 of at least 75° C. and a Saybolt colour according to ASTM D156 of at least 25 cm.
Abstract:
Methods are provided for producing lubricant base oils from petrolatum. After solvent dewaxing of a brightstock raffinate to form a brightstock base oil, petrolatum is generated as a side product. The petrolatum can be hydroprocessed to form base oils in high yield. The base oils formed from hydroprocessing of petrolatum have an unexpected pour point relationship. For a typical lubricant oil feedstock, the pour point of the base oils generated from the feedstock increases with the viscosity of the base oil. By contrast, lubricant base oils formed from hydroprocessing of petrolatum have a relatively flat pour point relationship, and some of the higher viscosity base oils unexpectedly have lower pour points than lower viscosity base oils generated from the same petrolatum feed. The base oils from petrolatum are also unusual in yielding both high viscosity and high viscosity index and can be generated while maintaining a high yield.
Abstract:
Microcrystalline paraffin having a consistency in a rage of paste-like to solid, prepared by catalytic hydroisomerization of FT paraffins having a carbon chain length distribution in a range of 20 to 105 at temperatures above 200° C., and being free of aromatic compounds, heterocyclic compounds, and naphthenes.
Abstract:
The invention relates to a process to prepare a microcrystalline wax and a middle distillate fuel by (a) hydrocracking/hydroisomerizing a Fischer-Tropsch product, wherein the weight ratio of compounds having at least 60 or more carbon atoms and compounds having at least 30 carbon atoms in the Fischer-Tropsch product is at least 0.2 and wherein at least 30 wt % of compounds in the Fischer-Tropsch product have at least 30 carbon atoms, (b) performing one or more distillate separations on the effluent of step (a) to obtain a middle distillate fuel fraction and a microcrystalline wax having an initial boiling point of between 500 and 600° C.
Abstract:
A process to prepare a microcrystalline wax by contacting under hydroisomerisation conditions a feed, having at least 80 wt % of normal-paraffins and having a congealing point of above 60 null C., with a catalyst having a noble metal and a porous silica-alumina carrier.
Abstract:
The present invention relates to a catalyst which consists of a combination of zeolite and platinum or palladium on aluminum oxide. The catalyst is suitable for converting solid Fischer-Tropsch paraffins into microcrystalline waxes.
Abstract:
High melting, deoiled and mildly deasphalted tank bottoms wax is catalytically refined in two stages using a catalyst comprising nickel molybdate on alumina. The first stage is maintained at a temperature at least about 50.degree. F. higher than the second stage and the temperature in the second stage is allowed to go no higher than about 575.degree. F. Hydrofined wax product from the second stage is recycled back into same and the temperature in the first stage is periodically increased in order to counteract deactivation of the catalyst. By using a judicious combination of process conditions, unrefined high melting tank bottoms microwax stocks can be made into high quality, high melting point microwax having excellent color and meeting FDA purity requirements.
Abstract:
A catalyst and process are described for hydrofining petroleum wax comprising contacting the wax with hydrogen in the presence of a catalyst comprising at least one metal hydrogenating component on a porous alumina/silica carrier containing from about 0.2 to 5 wt.% of an alkali metal component, the catalyst having a specific surface area of about 200 to 300 m.sup.2 /g and being further characterized in that (a) the volume of pores having a diameter in the range of 60 to 150 A is greater than 80% of the volume of pores having a diameter in the range of 0 to 150 A and (b) the volume of pores having a diameter in the range of 0 to 600 A is in the range of about 0.45 to 0.60 ml/g.