Abstract:
The present disclosure relates to a method for controlling a hydraulic pump of a wheel loader, and more particularly, to a method for controlling a hydraulic pump in order to improve acceleration performance of the wheel loader in a situation in which an injection amount of fuel is limited during an acceleration process of the wheel loader in accordance with stricter regulations on exhaust gas.
Abstract:
A control device is configured to sufficiently reduce the drive loss of a hydraulic pump. The control device is provided with a controller configured to control a regeneration valve to switch to a regeneration state, and to control the flow rate of a second hydraulic pump to reduce the ejection flow rate of the second hydraulic pump in accordance with regeneration of hydraulic oil through the regeneration valve when a combined operation of lowering a boom and pressing an arm is performed. The controller outputs a command for setting the number of rotations of an engine to be smaller than the rotation number designated by a rotation number designating unit when the ejection flow rate of the second hydraulic pump is not larger than a predetermined flow rate during the combined operation.
Abstract:
A hydraulic control system is disclosed. The hydraulic control system may have a hydraulic actuator, a valve arrangement, and an operator input device configured to generate a first signal indicative of a desired hydraulic actuator velocity. The hydraulic control system may also have a sensor configured to generate a second signal indicative of an actual flow rate of fluid entering the hydraulic actuator, and a controller. The controller may be configured to determine a desired flow rate of fluid into the hydraulic actuator based on the first signal; to estimate the actual flow rate based on the desired flow rate, a correction flow rate, and a system response model; and to determine the actual flow rate based on the second signal. The controller may also be configured to make a comparison of the estimated and determined actual flow rates of fluid, and to determine the correction flow rate based on the comparison.
Abstract:
A control device for a hybrid construction machine includes a discharge pressure introduction passage that leads a discharge pressure from a variable volume pump to a regulator, and a load pressure introduction passage that leads one of a maximum load pressure of respective actuators and a load pressure of a hydraulic motor to the regulator. A controller, having determined that the actuators are in an inoperative condition on the basis of a detection result from an operating condition detector, excites a solenoid of a solenoid pilot control valve such that a discharge oil from the variable volume pump is led to the hydraulic motor, and controls the regulator such that a differential pressure between the discharge pressure of the variable volume pump and the load pressure of the hydraulic motor is kept constant.
Abstract:
Disclosed is a controller of a hybrid, construction machine wherein electric power is generated by utilizing the standby flow rate of first and second main pumps, and the standby flow rate is converted into energy. Pilot channels are connected to the upstream side of on/off valves which are closed when first and second main pumps ensure a standby flow rate, and a controller unit judges that the first and second main pumps are discharging at the standby low rate based on pressure signals from first and second pressure sensors, and brings first and second solenoid valves to an open position.
Abstract:
A hybrid hydraulic drivetrain is configured to propel a vehicle and regenerate propulsion energy. The drivetrain includes a prime mover, an accumulator, an axle, a first rotating group, a second rotating group, and a hydraulic transformer. The first rotating group is configured to receive shaft energy from the prime mover, receive shaft energy from the drive axle, send shaft energy to the drive axle, receive hydraulic energy from the hydraulic accumulator, and send hydraulic energy to the accumulator. The second rotating group is configured to receive shaft energy from the prime mover. The hydraulic transformer is configured to charge the accumulator with hydraulic energy received from the second rotating group. The hydraulic transformer may be remotely mounted from the second rotating group. The second rotating group may supply hydraulic energy to an auxiliary circuit of the vehicle. The auxiliary circuit may operate with the prime mover shut down.
Abstract:
A hydraulic circuit comprises a hydraulic cylinder, an accumulator, and a bi-directional variable displacement hydraulic pump for managing flow between a head side of the hydraulic cylinder and both of a rod side of the hydraulic cylinder and the accumulator.
Abstract:
A hydraulic drive system executing load sensing control is capable of efficiently combusting and removing filter deposits inside an exhaust gas purification device by pump output power increasing control when there is no actuator operation, eliminating interference between the actuator operation and the pump output power increasing control. A first solenoid selector valve selects between tank pressure and delivery pressure of a pilot pump. A second solenoid selector valve is arranged in a line leading the output pressure of a differential pressure reducing valve to an LS control valve for selecting between enabling and disabling of the load sensing control. When the exhaust gas purification device needs regeneration, a controller executes switching to make the first solenoid selector valve output the delivery pressure of the pilot pump as dummy load pressure and to make the second solenoid selector valve disable the load sensing control.
Abstract:
A hydraulic arrangement (10) to increase a motor load is described. The hydraulic arrangement comprises a hydraulic consumer (28), a load pressure-controlled hydraulic pump (24), a hydraulic tank (26), and a hydraulic control circuit (30), connected with the hydraulic consumer (28), with which a volume flow conveyed by the hydraulic pump (24) can be changed, wherein the hydraulic control circuit (30) comprises an excess pressure valve (42) and an electronically controllable control valve (36). In order to ensure a prioritization of the hydraulic consumer with a simultaneous increase of the motor bad, a proposal is made that the hydraulic control circuit (30) comprise a load pressure-controlled pressure compensator (38) between the excess pressure valve (42) and the control valve (36).
Abstract:
Disclosed is a hydraulic drive system for a working machine, which enables to conduct forced regeneration continuously for a sufficient time. Based on an input of a lock detection signal S1 from a gate lock detection switch 40, a controller 50 detects that a gate lock lever 32 for controlling a gate lock on/off valve 33 is in a locked state, in other words, hydraulic actuators such as an arm cylinder 12 arranged on a hydraulic excavator 1 are all in non-operated states. Upon an input of a forced regeneration command signal So from a forced regeneration switch 53 in this detected state, control signals Cp,Cf are outputted to a boosting control valve 51 and regulator 52 to make a forced regeneration means (an arm cylinder control valve 27 and the regulator 52) conduct forced regeneration.