Abstract:
The invention relates to systems and methods for measuring properties of samples with standardized spectroscopic systems. The methods can include (i) measuring, with a first spectroscopic system, spectra of at least three different reference targets; (ii) calibrating the first spectroscopic system; (iii) measuring, with the first spectroscopic system, a spectrum of a known reference specimen having a known value of the property; (iv) generating a model for the measured property using the spectrum of the known reference specimen; (v) measuring, with a second spectroscopic system, the spectra of at least three different reference targets; (vi) calibrating the second spectroscopic system; (vii) applying the model to the second spectroscopic system; (viii) measuring a spectrum of the sample using the second spectroscopic system; and (ix) determining a value of the property using the model.
Abstract:
The invention relates to a spectrometer arrangement (10) comprising a spectrometer (14) for producing a spectrum of a first wavelength range of radiation from a radiation source on a detector (42). Said arrangement also comprises: an Echelle grating (36) for the spectral decomposition of the radiation penetrating the spectrometer arrangement (10) in a main dispersion direction (46); a dispersing element (34) for separating the degrees by means of spectral decomposition of the radiation in a transversal dispersion direction (48) which forms an angle with the main dispersion direction of the Echelle grating (36), in such a way that a two-dimensional spectrum (50) can be produced with a plurality of separated degrees (52); an imaging optical element (24, 38) for imaging the radiation penetrating through an inlet gap (20) into the spectrometer arrangement (10), in an image plane (40); and a surface detector (42) comprising a two dimensional arrangement of a plurality of detector elements in the image plane (40). The inventive arrangement is characterized in that another spectrometer (12) comprising at least one other dispersing element (64) and another imaging optical element (60,66) is provided in order to produce a spectrum (68) of a second wavelength range of radiation, which is different from the first wavelength range, from a radiation source on the same detector (42). The spectra can be spatially or temporally separated on the detector.
Abstract:
The present subject matter relates to methods of high-speed analysis of product samples during production of the product. Light is directed to a portion of a product under analysis and reflected from or transmitted through the product toward optical detectors. Signals from the optical detectors are compared to determine characteristics of the product under analysis. Temperature within the monitoring system may be monitored in order to provide compensation for the signals produced by the optical detectors. The products under analysis may be stationary, moved by an inspection point by conveyor or other means, or may be contained within a container, the container including a window portion through which the product illuminating light may pass.
Abstract:
An apparatus for performing real-time analysis of a subterranean formation fluid includes a light source configured to transmit at least a sample signal through a sample of the subterranean formation fluid and a reference signal, at least one photodetector configured to continuously detect the sample and reference signals, and an electronics assembly configured to compensate for drift in the detected sample signal in real-time based on the value of the detected reference signal.
Abstract:
Methods of selecting spectral elements and system components for a multivariate optical analysis system include providing spectral calibration data for a sample of interest; identifying a plurality of combinations of system components; modeling performance of a pilot system with one of the combinations of system components; determining optimal characteristics of the pilot system; and selecting optimal system components from among the combinations of system components.
Abstract:
An analysis apparatus and analysis method are provided for obtaining information on a sample from change in propagation state of a magnetic wave caused thereby, with less influence of frequency characteristics on the detection unit side. The analysis apparatus comprises a generating unit for generating a terahertz wave, a signal-making unit for making a code pattern, a delaying unit for delaying the code pattern produced by the signal-making unit, a band-diffusing unit for diffusing a band of the terahertz wave by modifying the phase of the terahertz wave generated by the generating unit in accordance with the code pattern produced by the signal-making unit, a detecting unit for detecting the terahertz wave, and a band-restoring unit for restoring the band by modulating the phase of the terahertz wave in accordance with the code pattern being output from the delaying unit before detection by the detecting unit.
Abstract:
A method of arranging and utilizing a multivariate optical computing and analysis system includes transmitting a o first light from a light source; generating a second light by reflecting the first light from the sample; directing a portion of the second light with a beamsplitter; and arranging an optical filter mechanism in a normal incidence orientation to receive the portion of the second light, the optical filter mechanism being configured to optically filter data carried by the portion of the second light.
Abstract:
A retro-emissive marking system that returns a coded-spectrum optical signal to a source of an interrogation beam is described. The system is valuable for applications such track-and-trace systems, vehicle markings, anti-counterfeit/security, inventory control, animal ear tags, product authentication, identification cards, and security systems; and it also has value as a remotely readable sensor of chemical or biological agents.
Abstract:
An optical spectroscopy tool is provided. In one embodiment a highly efficient means by which moderate resolution spectroscopy may be performed in the vacuum ultraviolet (VUV) is described. In one embodiment the techniques can be used as a high throughput spectrometer to spatially disperse wavelengths in and around the VUV in such a manner as to generate a substantially flat field focal plane, suitable for use in combination with an array detector. Some embodiments utilize prism based spectrometers. Some embodiments utilize detector elements that may be movable and/or located within the spectrometer. In some embodiments, collimated light may be provided as an input to the spectrometer.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.