Abstract:
The present invention provides three-dimensional force input control devices for use in sensing vector forces and converting them into electronic signals for processing, and methods of fabricating three-dimensional force input control devices for sensing vector forces and converting them into electronic signals for processing. In some embodiments, methods of fabricating provide a semiconductor substrate having a side one and a side two; fabricate stress-sensitive IC components and signal processing IC on side one of the substrate; fabricate closed trenches on side two of the substrate, the trenches forming boundaries defining elastic elements, frame areas, and rigid islands, and remove additional substrate material from side two of the substrate in the frame area leaving the dimension of the rigid island protruding outward from side two.
Abstract:
A strain sensor for measuring strain in a surface of an object includes an insulating flexible substrate, a first conductive contact, a second conductive contact and a piezoelectric nanowire. The insulating flexible substrate is coupled to the object. The first conductive contact and the second conductive contact are mounted on the insulating substrate. The piezoelectric nanowire is electrically coupled to the first conductive contact and the second conductive contact. The piezoelectric nanowire is subject to strain when the surface of the object is subject to strain, thereby creating a voltage differential therebetween. A trigger sensor includes a substrate, a piezoelectric nanowire and a conductive contact. The piezoelectric nanowire extends from the substrate. The conductive contact is disposed in relation to the piezoelectric nanowire so that a voltage differential between the substrate and the conductive contact when the substrate moves with the predetermined acceleration.
Abstract:
A flow velocity detector for detecting a flow velocity of a fluid flowing through a flow passage is provided, the flow velocity detector including a flow passage-forming section which defines the flow passage; a stress light-emitting section which is arranged at the flow passage-forming section to receive a stress having a magnitude depending on the flow velocity of the fluid and which emits a light of which amount corresponds to a change of the received stress; and a light-receiving sensor which receives the light emitted by the stress light-emitting section. The flow velocity of the fluid is detected based on an amount of the light received by the light-receiving sensor to generate a detection signal. Accordingly, the structure is simple and small-sized, and the flow velocity of the fluid can be detected at low cost.
Abstract:
With a measurement method and a measurement device for the measurement of a path covered by a first object (1) in relation to a second object (2), a measurement body (3) is deformed by a relative movement of the objects and at least a first deformation sensor (4) assigned to the measurement body (3) converts the measurement body (3) deformation into a measurement signal. The measurement signal is converted by an evaluation device (20) into information on the path covered. In order to increase the precision and measurement speed in a way that is simple structurally and saves space, the measurement signal is emitted when an area of the measurement body (3) is stretched along the longitudinal axis (6) of the measurement body (3) and a further area is compressed along the longitudinal axis (6) of the measurement body (3).
Abstract:
A piezo-TFT cantilever microelectromechanical system (MEMS) and associated fabrication processes are provided. The method comprises: providing a substrate, such as glass for example; forming thin-films overlying the substrate; forming a thin-film cantilever beam; and simultaneously forming a TFT within the cantilever beam. The TFT is can be formed least partially overlying a cantilever beam top surface, at least partially overlying a cantilever beam bottom surface, or embedded within the cantilever beam. In one example, forming thin-films on the substrate includes: selectively forming a first layer with a first stress level; selectively forming a first active Si region overlying the first layer; and selectively forming a second layer overlying the first layer with a second stress level. The thin-film cantilever beam is formed from the first and second layers, while the TFT source/drain (S/D) and channel regions are formed from the first active Si region.
Abstract:
A circuit board, which includes one or more sensors, is integrated in a fluid control device, such as a valve manifold and a base plate. The fluid control device selectively directs a fluid used to control pneumatic or hydraulic equipment. The sensors are used to measure physical characteristics of the fluid, such as flow rate, pressure, and temperature. A flow sensor includes a paddle and a support member. The paddle is disposed at least partially in an orifice and is displaced in response to fluid flow. The support member positions the paddle in the orifice and includes a plurality of strain gauges. The strain gauges are disposed on only one side of the support member and are mechanically stressed in response to the paddle being displaced by the fluid flow.
Abstract:
A force-detecting apparatus comprising an elastic member deformable symmetrically with respect to the center, a first displacement-detecitng means for detecting the displacements of the elastic member at the positions symmetric with respect to the center in the same direction, and a second displacement-detecting means for detecting the displacements of the elastic member at the positions symmetric with respect to the center in the opposite directions.
Abstract:
Apparatus for weighing goods or articles which includes a movement and indication assembly having a movement means and an indication means driven by the movement means wherein the movement means exhibits hysteresis between weighing operations involving increasing and decreasing weights of goods, a weighing platform on which the goods or articles are received for the weighing operations, a bar linkage mechanism between the weighing platform and the movement means, and a counterforce means connected to the bar linkage mechanism. An extension member is provided in the bar linkage mechanism to eliminate the hysteresis effect in the movement means to reflect greater accuracy in the indication means.
Abstract:
A load cell of the beam type having a planar operator member having a pair of parallel longitudinal slots defining a central beam member and a pair of parallel bearing members spaced outwardly of the beam member, the outer ends of the bearing members and of the beam member being integral with one another, the operator member having a pair of laterally outwardly extending support members positionable on a horizontal laterally spaced surface of a support block, the load or force to be measured being applied to the central portion of the beam member which is provided with strain measuring means such as strain gages at locations of flexure of the beam member. The support block may have a pair of transversely extending narrow edges underlying the central portions of the bearing members for preventing torsional movement of the bearing members as the load is applied to the beam member. A modified form of the load cell has an operator member whose support members extend parallel to and longitudinally of the bearing members and are secured thereto by transverse connector members, the support members being secured at opposite ends to horizontal support surfaces of a support block, the connector members and the bearing members engaging transverse narrow edges of the support block whereby the support members may be prestresssed upwardly at their midpoints.