Abstract:
A method of using an in-situ aerial image sensor array is disclosed to separate and remove the focal plane variations caused by the image sensor array non-flatness and/or by the exposure tool by collecting sensor image data at various nominal focal planes and by determining best focus at each sampling location by analysis of the through-focus data. In various embodiments, the method provides accurate image data at best focus anywhere in the exposure field, image data covering an exposure-dose based process window area, and a map of effective focal plane distortions. The focus map can be separated into contributions from the exposure tool and contributions due to topography of the image sensor array by suitable calibration or self-calibration procedures. The basic method enables a wide range of applications, including for example qualification testing, process monitoring, and process control by deriving optimum process corrections from analysis of the image sensor data.
Abstract:
One embodiment of the present invention provides a system that performs lithography verification for a double-patterning process on a mask layout without performing a full contour simulation of the mask layout. During operation, the system starts by receiving a first mask which is used in a first lithography step of the double-patterning process, and a second mask which is used in a second lithography step of the double-patterning process. Note that the first mask and the second mask are obtained by partitioning the mask layout. Next, the system receives an evaluation point on the mask layout. The system then determines whether the evaluation point is exclusively located on a polygon of the first mask, exclusively located on a polygon of the second mask, or located elsewhere. The system next computes a printing indicator at the evaluation point for the mask layout based on whether the evaluation point is exclusively located on a polygon of the first mask or exclusively located on a polygon of the second mask.
Abstract:
To calibrate a lithographic apparatus contrast in the aerial image is measured for a plurality of different settings of available manipulators of the projection system. Appropriate settings of the manipulators are determined as those giving the maximum contrast values.
Abstract:
A measurement apparatus which illuminates a pattern positioned on an object plane to form an aerial image 40 on an image plane and measures a light intensity distribution of the aerial image 40 via a slit 54 on the image plane, the measurement apparatus including a stage 60 moving the slit, a light receiving element 53 mounted on the stage 60 and including at least two light receiving portions which receive the light transmitted through the slit, a storage unit which stores a relationship between an angle ε and a distance between a center position of the slit 54 and a position where a intensity of light that the light receiving element 53 receives is maximum, a calculation unit which obtains the angle ε, and a stage driving unit 80 which rotates the stage 60 so that the angle ε is equal to zero.
Abstract:
A lithographic apparatus can include the following devices: a patterning system, a projection system, and a radiation beam inspection device. The patterning system can be configured to provide a patterned radiation beam. The projection system can be configured to project the patterned radiation beam onto a target portion of a substrate. Further, the radiation beam inspection device can be configured to inspect at least a part of the patterned radiation beam. In a substrate exposure position, the projection system is configured to expose a pattern of radiation on the substrate using the patterned radiation beam and the radiation beam device is configured to move the reflecting device away from a light path of the patterned radiation beam. In a radiation beam inspection position, the radiation beam inspection device is configured to move the reflecting device into the light path of the patterned radiation beam.
Abstract:
An optical imaging system for inspection microscopes with which lithography masks can be checked for defects particularly through emulation of high-aperture scanner systems is provided. The imaging system for emulating high-aperture scanner systems includes imaging optics, a detector and an evaluating unit, wherein at least one polarization-active optical element is arranged as desired in the imaging beam path for selection of different polarization components of the imaging beam, an optical element with intensity attenuation function can be introduced in the imaging beam path, images of the mask and/or sample are received by the detector for differently polarized beam components and are conveyed to the evaluating unit for further processing. It is possible to examine lithography masks for defects in spite of increasingly smaller structures and increasingly higher image-side numerical apertures of the imaging systems Realistic images of the stepper systems can be generated by emulating the occurring vector effects.
Abstract:
A direct exposure apparatus having a light source for projecting light onto an exposure target or, more specifically, an exposure target substrate, comprises: measuring means for measuring the illuminance distribution of light on an area corresponding to the exposure surface of the exposure target substrate; and control means for controlling, based on the measurement result supplied from the measuring means, the light source so that the intended illuminance distribution can be obtained.
Abstract:
The present invention provides an exposure apparatus which exposes a substrate via a liquid, comprising a measurement substrate includes a transmission part configured to transmit a light beam having passed through a projection optical system, a light-receiving unit including a light-receiving surface configured to receive the light beam transmitted through the liquid and the transmission part, and a calculator configured to arithmetically convert a light intensity distribution, on the light-receiving surface, of the light beam received by the light-receiving surface into a light intensity distribution on a pupil plane of the projection optical system, based on information indicating a correlation between a position coordinate on the light-receiving surface and a position coordinate on the pupil of the projection optical system.
Abstract:
A method of calculating an aerial image of a spatial light modulator array includes calculating pair-wise interference between pixels of the spatial light modulator array; calculating effective graytones corresponding to modulation states of the pixels; and calculating the aerial image based on the pair-wise interference and the effective graytones. The graytones depend only on the modulation states of the pixels. The pair-wise interference depends only on position variables. The position variables are position in an image plane and position in a plane of a source of electromagnetic radiation. The pair-wise interference can be represented by a matrix of functions. The pair-wise interference can be represented by a four dimensional matrix. The effective graytones are approximated using sinc functions, or using polynomial functions.
Abstract:
A method for determining intensity distribution in the focal plane of a projection exposure arrangement, in which a large aperture imaging system is emulated and a light from a sample is represented on a local resolution detector by an emulation imaging system. A device for carrying out the method and emulated devices are also described. The invention makes it possible to improve a reproduction quality since the system apodisation is taken into consideration. The inventive method consists in includes determining the integrated amplitude distribution in an output pupil, combining the integrated amplitude distribution with a predetermined apodization correction and calculating a corrected apodization image according to the modified amplitude distribution.