摘要:
A robot includes a grasping unit and performs an action based on: first imaging information of the grasping unit which does not grasp an object to be grasped in a first point; second imaging information of the grasping unit which does not grasp the object to be grasped in a second point which is different from the first point; and third imaging information of the object to be grasped which is grasped by the grasping unit in the first point.
摘要:
There is provided an image processing apparatus, which are capable of controlling a motion of a robot with high accuracy without coding a complex robot motion control program point by point. First coordinate values being each of position coordinates of movement destinations of an end effector of a robot are acquired. Second coordinate values being position coordinates of a target are detected based on an image of the target captured at each of the movement destinations. Selections of a plurality of operations which a robot controller is made to execute are accepted out of a plurality of operations including at least an operation of moving the end effector to the first coordinate values or an operation of moving the end effector to the second coordinate values, to accept a setting of an execution sequence of the plurality of operations the selections of which have been accepted.
摘要:
Various technologies described herein pertain to automatic in-situ calibration and registration of a depth sensor and a robotic arm, where the depth sensor and the robotic arm operate in a workspace. The robotic arm can include an end effector. A non-parametric technique for registration between the depth sensor and the robotic arm can be implemented. The registration technique can utilize a sparse sampling of the workspace (e.g., collected during calibration or recalibration). A point cloud can be formed over calibration points and interpolation can be performed within the point cloud to map coordinates in a sensor coordinate frame to coordinates in an arm coordinate frame. Such technique can automatically incorporate intrinsic sensor parameters into transformations between the depth sensor and the robotic arm. Accordingly, an explicit model of intrinsics or biases of the depth sensor need not be utilized.
摘要:
A workpiece takeout system includes a robot arm and a disposed-state detector. The robot arm is configured to perform a workpiece takeout operation to take out a workpiece disposed in an area among a plurality of areas. The disposed-state detector is configured to detect a disposed state of the workpiece and is configured to, while the robot arm is performing the workpiece takeout operation to take out the workpiece disposed in the area among the plurality of areas, detect a disposed state of another workpiece disposed in another area among the plurality of areas.
摘要:
The robot system includes work facilities and a central computer device. The work facilities comprise a robot, a robot controller. The robot controller includes a storage part which stores teaching information. The central computer device comprises a teaching information database, an information accepting part, a correlation determining part. The teaching information database stores a plurality of the teaching information in association with detection information of the sensor or processed information. The information accepting part accepts the detection information of a sensor of each work facility. The correlation determining part determines whether or not the plurality of teaching information stored includes teaching information comprising a predetermined correlation with respect to the detection information or the processed information corresponding thereto. The robot system further comprises a first transferring part. The first transferring part transfers specific the teaching information determined to comprise the correlation to the storage part.
摘要:
A synthetic representation of a tool for display on a user interface of a robotic system. The synthetic representation may be used to show force on the tool, an actual position of the tool, or to show the location of the tool when out of a field of view. A three-dimensional pointer is also provided for a viewer in the surgeon console of a telesurgical system.
摘要:
A pickup device for picking up a target object from a plurality of objects randomly piled up in a container, and for placing the target object in a predetermined posture to a target location is provided. The device includes an approximate position obtaining part for obtaining information on an approximate position of the target object, based on information on a height distribution of the objects in the container, which is obtained by a first visual sensor. The device also includes a placement operation controlling part for controlling a robot so as to bring the target object into a predetermined position and posture relative to the target location, based on information on a position and posture of the target object relative to a robot, which is obtained by a second visual sensor.
摘要:
An operator telerobotically controls tools to perform a procedure on an object at a work site while viewing real-time images of the work site on a display. Tool information is provided in the operator's current gaze area on the display by rendering the tool information over the tool so as not to obscure objects being worked on at the time by the tool nor to require eyes of the user to refocus when looking at the tool information and the image of the tool on a stereo viewer.
摘要:
The position and orientation of a target object is obtained based on first measurement data obtained by a first sensor (first calculation). The position and orientation of the target object is obtained based on second measurement data obtained by a movable second sensor set in a position and orientation different from that of the first sensor (second calculation). When the position and orientation obtained by the first calculation and that obtained by the second calculation match each other, the position and orientation obtained by the first or second calculation or a position and orientation calculated from the position and orientation obtained by the first calculation and that obtained by the second calculation is output as the position and orientation of the target object.
摘要:
An user support apparatus includes a display unit configured to display an image obtained by image capturing with the image capturing unit, an input unit configured to receive a designation of a region of a workpiece to be detected in the image displayed on the display unit, and a determining unit configured to determine an image capturing start condition for the image capturing unit that is defined in terms of the amount of movement of a conveying apparatus, based on the size of the region indicating the workpiece to be detected by using a relationship between the image capturing range of the image capturing unit and the physical length of the conveying apparatus.