Abstract:
A multiple switch construction for a keyboard or the like produced as a flat panel embodying laminates of electrical conductors in desired patterns, assembled as stratifications in close proximity and separated by spacers. Individual depressible means operating through resilient members urge movable switch elements into contact with fixed electrical conductors with a rotary, wiping action to insure positive electrical contact.
Abstract:
A printed circuit keyboard having contacts thereon with leads from the contacts passing through the board and connected to conductors on the underside of the board. A ground plane in the form of a conductive sheet is positioned above the contacts and biased out of contact therefrom. This sheet could be Mylar plated with nickel. The Mylar sheet is positioned over an apertured member aligned with the contacts to provide the biasing. The Mylar is sufficiently taut so that only one contact can be positioned against the depressed Mylar sheet at one time. A cellophane or other member can be placed over the Mylar and aligned with the apertures to provide numeric indicators for the keyboard.
Abstract:
A two layer planar multicontact switch including a first substrate layer having a plurality of parallel conductive lines deposited on the upper surface thereof and a second diaphragm layer located over the substrate layer and having a plurality of parallel conductive lines deposited on the lower surface thereof. The conductive lines on the substrate are normal to the conductive lines on the diaphragm such that a plurality of matrix switch intersections are formed. The conductive lines on the substrate and the diaphragm have insulating material selectively deposited thereon to electrically isolate the upper and lower conductive lines except at the points of intersection. The diaphragm layer may be mechanically depressed at the intersection points to selectively connect the upper lines with the lower lines to form switch closure contacts. The diaphragm and the substrate are formed from transparent material so that the switch can be employed in combination with a visual display.
Abstract:
A key entry device including a housing, a keypad array disposed within the housing and including a plurality of keys, a key contact array disposed within the housing below the keypad array and including a plurality of contact pairs, a dome array underlying the keypad array and the key contact array and including a plurality of domes, and a protrusion array underlying the dome array and including a plurality of protrusions, whereby depression of one of the plurality of keys of the keypad array causes a corresponding one of the domes of the dome array to be displaced downwardly and to be deformed by pushing engagement with a corresponding one of the protrusions of the protrusion array into contact with at least one of the contact pairs of the key contact array.
Abstract:
An electrical contact device includes a high electric potential-side contact and a low electric potential-side contact having a lower electric potential than the high electric potential-side contact. The high electric potential-side contact and the low electric potential-side contact are configured to be brought into and out of contact with each other. At least one of the high electric potential-side contact and the low electric potential-side contact is formed of a low-boiling point material whose boiling point is lower than 2562° C. or a mixed material that contains the low-boiling point material.
Abstract:
A electromechanical relay device (100) comprising a source electrode (102), a beam (104) mounted on the source electrode at a first end and electrically coupled to the source electrode; a first drain electrode (112) located adjacent a second end of the beam, wherein a first contact (110) on the beam is arranged to be separated from a second contact (112) on the first drain electrode when the relay device is in a first condition; a first gate electrode (106 arranged to cause the beam to deflect, to electrically couple the first contact and the second contact such that the device is in a second condition; and wherein the first and second contacts are each coated with a layer of nanocrystalline graphite.
Abstract:
An input device, including: a base, an upper cover, a lever assembly, a reset assembly, an electrical assembly, a spring switch, and a terminal assembly. The upper cover is disposed on the base and includes a central cavity. The lever assembly is disposed in the central cavity formed by the upper cover and the base, and includes a lever, an upper shoulder, and a lower shoulder. The lever includes an upper end and a lower end. The reset assembly is disposed below the lever assembly. The electrical assembly is electrically connected to the lever assembly, and includes a first slider, a second slider, a first carbon-film conductive dome, a first carbon-film resistor, a second carbon-film conductive dome, a second carbon-film resistor, and a trigger. The spring switch is disposed in the base and positioned below the trigger.
Abstract:
Device for making and/or breaking a current including a pair of permanent contacts (3, 4), at least one of the contacts (3, 4) being movable. At least one permanent contact (3, 4) including a main portion (3.1, 4.1) having a free end and an end protection portion (3.2, 4.2) secured to the free end of the main portion (3.1, 4.1), designed to be in mechanical and electrical contact with the other permanent contact (4, 3) only during an operation for opening or closing the pair. The end protection portion (3.2, 4.2) is made of a single transition metal having a melting temperature that is strictly higher than that of the main portion (3.1, 4.1) to which it is secured, or of an oxide or carbide of such a metal, or even of zinc oxide. For application in particular to high- or medium-voltage circuit breakers.
Abstract:
A capacitive switch assembly formed on a glass substrate with one capacitive plate formed of a thin metal film deposited thereon covered by a dielectric spacer deposited thereover for spacing therefrom a second plate formed of conductive polymer paste screened on the dielectric spacer. Discontinuities are provided in the second plate which is brought in-circuit by a conductive elastomer shorting bar movable upon user actuation of the switch.
Abstract:
A key switch structure comprises a first insulating cover having on one surface thereof a first conductive layer and an anisotropically electrical conductive layer printed on the first conductive layer, a second insulating cover having one surface arranged at a side opposite to the anisotropically electrical conductive layer on the first cover member, and a second conductive layer sandwiched between the anisotropically electrical conductive layer and the second insulating cover. At least, one of the first and second insulating covers being flexible. A depression force is selectively introduced from the other surface side of the flexible cover through the anisotropically electrical conductive layer so as to form a conductive path between the first and second conductive layers.