摘要:
It is an object to provide a coating agent and a paint, which enable sufficient exhibition of the capability of a photocatalyst such as the capability to decompose an organic substance or the like; particularly, sufficient exhibition of the capability on a thin coating film. A coating agent of the present invention is manufactured as follows. Specifically, after photo-semiconductor powder has been dispersed in water, colloids such as a fluorine emulsion or the like are mixed into the aqueous dispersion. The particle size of the particles in the colloids is one time or more the particle size of the photo-semiconductor powder in the photo-semiconductor powder, and the photo-semiconductor particles assume a weight ratio of 0.1 to 10% in the entire coating agent. The photo-semiconductor particles are caused to be adsorbed on the surface of the colloidal particle within the range of one to five layers. Further, a porous sol solution may also be added to the coating agent. Alternatively, powder formed by coating photo-semiconductor powder with an adsorptive function substance may be employed in place of the photo-semiconductor powder.
摘要:
A method is provided for coating optical lenses and other optical articles with anti-reflection (AR) coatings. The lenses have low reflectivity, provide a substantially white light reflection and have a low stress AR coating and are ideally suited for optical lenses made using a molding procedure which provides a low stress lens substrate. In one aspect the method uses special coating compositions with one being a high index of refraction composition and the other being a low index of refraction composition. In another aspect a method is also disclosed using an optical monitor in conjunction with a conventional vapor deposition apparatus whereby an optical reference lens is used and a particular light frequency of reflected light is measured and this measurement is then used to determine when the desired optical coating is achieved. In a still further aspect the method also preferably calculates the optical thickness of each layer using a specific ratio of blue to green to red colors in the reflected light. The stress of the AR coating is also controlled by adjusting the optical thickness for each layer, if necessary, to minimize the difference in the tensile stresses and compressive stresses between low index/high index layers.
摘要:
There is disclosed a powdered composition that enhances the adherence of print to hard and uneven finish printing stock such as vellum, as well as a method of using the composition on such printing stock.
摘要:
Coatings which are applied to a component have to be removed again in a complex way in certain regions, since a coating was not desired to be present in those regions. The subsequent removal of this layer adversely affects the component, for example its geometry. The method according to the invention for coating a component includes a masking which at least partially comprises a ceramic powder and can therefore easily be removed after the component has been coated.
摘要:
The present invention is directed to a 3DPnull material composition and method of use. The composition of the present invention includes an adhesive material, a fibrous component and a filler. Alternatively, the composition may include a particulate material having a mean particle size between about 10 microns and about 300 microns, a soluble adhesive material. The compositions may also include an accelerator and an additional adhesive.
摘要:
Compositions and methods for destroying biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide or hydroxide nanocrystals. In various embodiments, the metal oxide or metal hydroxide nanocrystals have reactive atoms stabilized on their surfaces, species adsorbed on their surfaces, or are coated with a second metal oxide. The desired metal oxide or metal hydroxide nanocrystals can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, nullCe(NO3)3nullCu(NO3)2nullTiO2, Mg(OH)2, Ca(OH)2, Al(OH)3, Sr(OH)2, Ba(OH)2, Fe(OH)3, Cu(OH)3, Ni(OH)2, Co(OH)2, Zn(OH)2, AgOH, and mixtures thereof.
摘要翻译:提供了用于破坏生物制剂如毒素和细菌的组合物和方法,其中待破坏的物质与细碎的金属氧化物或氢氧化物纳米晶体接触。 在各种实施方案中,金属氧化物或金属氢氧化物纳米晶体在其表面上具有稳定的反应性原子,吸附在其表面上的物质或用第二金属氧化物涂覆。 当粉末不可行时,可以将期望的金属氧化物或金属氢氧化物纳米晶体压制成颗粒使用。 优选的金属氧化物包括MgO,SrO,BaO,CaO,TiO2,ZrO2,FeO,V2O3,V2O5,Mn2O3,Fe2O3,NiO,CuO,Al2O3,SiO2,ZnO,Ag2O,[Ce(NO3) NO 3)2] TiO 2,Mg(OH)2,Ca(OH)2,Al(OH)3,Sr(OH)2,Ba(OH)2,Fe(OH)3,Cu(OH) OH)2,Co(OH)2,Zn(OH)2,AgOH及其混合物。
摘要:
Disclosed is a coating liquid for forming a transparent conductive film, comprising conductive fine particles having an average particle diameter of 1 to 200 nm, silica particles having an average particle diameter of 4 to 200 nm and a polar solvent. The silica particles are in the form of chain silica particles having 2 to 10 silica particles on an average being connected. The content of an alkali in the silica particles is not more than 1000 ppm in terms of an alkali metal M. Also disclosed is a substrate with a transparent conductive film, comprising a substrate, a transparent conductive fine particle layer formed on the substrate and containing conductive fine particles having an average particle diameter of 1 to 200 nm and silica particles having an average particle diameter of 4 to 200 nm and/or chain silica particles having 2 to 10 silica particles on an average being connected, and a transparent film provided on the transparent conductive fine particle layer and having a refractive index lower than that of the transparent conductive fine particle layer. A display device using the substrate with a transparent conductive film is further disclosed. The coating liquid for forming a transparent conductive film is capable of forming a transparent conductive film having low surface resistance, excellent antistatic properties, excellent electromagnetic blocking properties, high film strength and excellent adhesion to a substrate.
摘要:
A composition for chemical-mechanical planarization comprises periodic acid and an abrasive present in a combined amount sufficient to planarize a substrate surface having a feature thereon comprising a noble metal, noble metal alloy, noble metal oxide, or any combination thereof. In one embodiment, the periodic acid is present in an amount in a range of from about 0.05 to about 0.3 moles/kilogram, and the abrasive is present in an amount in a range of from about 0.2 to about 6 weight percent. In another embodiment, the composition further comprises a pH-adjusting agent present in an amount sufficient to cause the pH of the composition to be in a range of from about pH 5 to about pH 10, or of from about pH 1 to about pH 4. A method for planarizing a substrate surface having a feature thereon comprising at least one noble metal, noble metal alloy, or noble metal oxide, or a combination thereof, comprises providing a composition or slurry comprising periodic acid and an abrasive in a combined amount sufficient to planarize the substrate surface, and polishing the surface with the slurry. A substrate produced by such a method is also provided.
摘要:
A polishing composition for polishing a semiconductor substrate has a pH of under 5.0 and comprises (a) a carboxylic acid polymer comprising polymerized unsaturated carboxylic acid monomers having a number average molecular weight of about 20,000 to 1,500,000 or blends of high and low number average molecular weight polymers of polymerized unsaturated carboxylic acid monomers, (b) 1 to 15% by weight of an oxidizing agent, (c) up to 3.0% by weight of abrasive particles, (d) 50-5,000 ppm (parts per million) of an inhibitor, (e) up to 3.0% by weight of a complexing agent, such as, malic acid, and (f) 0.1 to 5.0% by weight of a surfactant.
摘要:
Rare earth-containing compound particles of polyhedral shape having an average particle diameter of 3-100 nullm, a dispersion index of up to 0.5, and an aspect ratio of up to 2 can be thermally sprayed to form an adherent coating, despite the high melting point of the rare earth-containing compound. A sprayed component having the particles spray coated on a substrate surface is also provided.