Abstract:
A circuit for detecting a reduction below a threshold value in a supply voltage provided to storage devices integrated into a semiconductor. A comparator is coupled between a voltage supply line and a signal ground and has a first or reference input and a second or test-signal input. A generator of a stable voltage reference has an output coupled to the first input and a divider of the supply voltage coupled to the second input of the comparator. A circuit means is arranged to feed the voltage supply line with the higher of the supply voltage and a programming voltage also provided to the storage devices.
Abstract:
A switching circuit utilizing MOS transistors without body effect having a first transistor inserted with source and drain terminals between two connection terminals, and a second and third transistors inserted in series by means of their respective source and drain terminals between the first transistor and a ground. The gate terminal of the second transistor is connected to the gate terminal of the first transistor to which is applied a command signal. Upon switching a signal is applied in phase opposition to the command signal to the gate terminal of the third transistor. The substrates of the first and the second transistors are connected to a connection node between the second and third transistors. The substrate of the third transistor is connected to ground.
Abstract:
A circuit for generating a reference voltage and detecting a drop in a supply voltage, comprising at least one threshold comparator having an input terminal and an output terminal, and a voltage divider connected between a first supply voltage reference and a second voltage reference and connected to the input terminal of the comparator, further provides for the output terminal of said comparator to be connected to the input terminal through at least one feedback network comprising at least one current generator. The feedback network further comprises a buffer block having an input terminal connected to said comparator and a first output terminal connected to a switch which is connected between a circuit node of said voltage divider and the second voltage reference.
Abstract:
A latch arrangement, having a load, receives an equalization signal to control the timing of data sensing and data capture. The slope of the equalization signal is modulated so that it has two slopes: a less steep one which permits evaluation of a datum with appropriate caution, and a much steeper slope, which occurs at the end of reliable evaluation, to capture the datum and store it. The equalization signal is generated by first presetting the equalization signal to a first value. Thereafter a change in the equalization signal from the first value to a second value is initiated. After initiating the change in the equalization signal, the equalization signal is slowly discharged at a first slope. A ratio between a current generated in a generic matrix cell applied to the load of the latch arrangement and a reference current is evaluated. When the evaluated ratio reaches a desired level, the equalization signal is quickly discharged to the second value at a second slope.
Abstract:
A circuit for use with an ignition system to enable detection of an overvoltage condition in the primary winding of an ignition coil caused by opening of a power switch connected to the primary winding. The circuit senses the overvoltage condition by comparing the voltage on the primary winding to a first threshold voltage and produces a signal at an output terminal indicative of the presence of the overvoltage condition. The output terminal is maintained at a high logic level upon detection of an overvoltage condition and throughout the time duration of the overvoltage condition, and drops to a low logic level when the voltage on the primary winding falls to a second threshold voltage, which is lower than the first threshold voltage. Comparison circuitry is provided for sensing the overvoltage condition by reference to fixed voltage values. Logic circuitry responds to the comparison circuitry to produce the appropriate logic levels at the output terminal.
Abstract:
A voltage reference circuit with programmable thermal coefficient, comprising first and second bipolar transistors having their base terminals connected together and collector terminals connected to two legs of a current mirror circuit. The emitter terminal of the first transistor is connected to ground through two resistors in series with each other, and the emitter terminal of the second transistor is connected to a node between the two resistors. The emitter of at least one of the two transistors has discrete portions adapted to be connected electrically together in a predetermined fashion.
Abstract:
This device for generating a reference voltage for a capacitive bootstrap circuit of an output stage can be easily integrated. The output stage comprises a driving block, a capacitive bootstrap circuit and a reference voltage generating block generating a floating reference voltage which is referred to the output voltage signal and switches in accordance thereto.
Abstract:
An improved fabrication process employing relatively non-critical masks permits the fabrication of high density electrically programmable and erasable EEPROM or FLASH-EPROM devices. In practice the novel process permits the fabrication of a contactless, cross-point array providing for a more comfortable "pitch" of bitline metal-definition while realizing a cell layout with a gate structure which extends laterally over adjacent portions of field oxide, thus establishing an appropriate capacitive coupling between control and floating gates. Two alternative embodiments are described.
Abstract:
A driving circuit for a final decoding stage of an EPROM, EEPROM or FLASH EPROM for battery powered apparatuses functioning at relatively low supply voltage avoids energy absorption from a commonly boosted voltage node by switching the capacitance of the control node of the p-channel pull-up device of the CMOS inverter that drives the memory line and which constitutes the load of the driving circuit. The node is effectively charged by drawing current from the supply node and is discharged rapidly by switching in parallel thereto a previously discharged capacitance. This charge-sharing switcheable capacitance may advantageously be the capacitance of a similar p-channel pull-up control node of a deselected wordline of the array.
Abstract:
Electronic switch for low-voltage supply circuits completed with CMOS technology and comprising a first, a second and a third circuit element (SW1 ,SW2,SW3) consisting each of a pair of complementary transistors. The first and second of said elements (SW1,SW2) are inserted between two connection terminals of the switch (A,B) while the third element SW3 is inserted between a node (C) included between the first and the second element of a voltage reference (VCM). The first and second element are driven to conduction in phases (.phi.1) not overlapping the phases (.phi.2) in which it conducts the third element.