摘要:
An electrode array has a flexible body supporting a plurality of electrodes. Each electrode comprises an exposed connector pad at the upper end of the body, an exposed recording/stimulating pad at the lower end of the body, and a conductor located within the body and electrically connecting the connector pad and the recording/stimulating pad. In one embodiment the electrode array has an elongated recording/stimulating portion coiled or folded to distribute the exposed recording/stimulating pads in three dimensions. An implantation method employs an introducer with a helical portion to which an end of the flexible electrode is attached. The helical portion straightens to pass through a small-diameter cannula and then resumes its helical configuration to place the recording/stimulating portion of the attached electrode in a helix within the patient's tissues.
摘要:
A pressure cavity is durable, stable, and biocompatible and configured in such a way that it constitutes pico to nanoliter-scale volume. The pressure cavity is hermetically sealed from the exterior environment while maintaining the ability to communicate with other devices. Micromachined, hermetically-sealed sensors are configured to receive power and return information through direct electrical contact with external electronics. The pressure cavity and sensor components disposed therein are hermetically sealed from the ambient in order to reduce drift and instability within the sensor. The sensor is designed for harsh and biological environments, e.g. intracorporeal implantation and in vivo use. Additionally, novel manufacturing methods are employed to construct the sensors.
摘要:
Disclosed are apparatus and methods that provide for electrical contacts in a substrate. For example, the apparatus may comprise a trench formed in a substrate, with an electrical contact pad formed on interior walls of the trench that comprises a narrowed opening. A conductive wire is squeezed into the trench that is secured by mechanical stress resulting from material deformation. One exemplary method comprises depositing metal on walls of the trench such that a narrowed opening is provided, and disposing a conductive wire in the trench so that it contacts the deposited metal and is secured by mechanical stress resulting from material deformation. Another exemplary method comprises providing a substrate having a trench formed therein, placing a conductive wire in the trench, and depositing metal atoms into the trench to bury the wire and provide exposed metal on a surface of the substrate.
摘要:
Disclosed are methods for attaching an integrated circuit to a substrate, and in particular, a fused silica substrate, along with apparatus fabricated using the methods. Exemplary apparatus comprises a glass substrate, a metallic layer disposed on the substrate, and an integrated circuit eutectically bonded to the glass substrate via the metallic layer. The integrated circuit and fused silica substrate form part of a hermetic sensor. In an exemplary sensor, a first trench is formed in a first substrate. A second trench that is deeper than the first trench is formed in the first substrate. A first plurality of electrodes are formed in the first trench. An integrated circuit is attached to the first substrate within the second trench using a solder preform. The integrated circuit may be attached to the first substrate by depositing a Cr/Au film onto either the integrated circuit or first substrate, depositing a Cr/Ni/Au film onto either the first substrate or integrated circuit, placing the an Au/Sn solder preform onto the Cr/Ni/Au film, positioning the integrated circuit on top of the soldered preform so that it contacts the Cr/Au film, and heating the assembly.
摘要:
A coupling loop or antenna is provided that can be used with a system that determines the resonant frequency of a sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. In one embodiment multiple energizing loops energize an implanted sensor and a sensor coupling loop connected to an input impedance that is at least two times greater than the inductance of the sensor coupling loop receives the sensor signal.
摘要:
A ventricular assist device comprises a sheet of hydraulically actuated material that can be affixed to prescribed locations on the surface of the heart to assist areas of the heart that do not contract normally. The material is comprised of a network of contractible unit cells that individually contract when fluid is pumped into them. These unit cells are connected together in a network that causes the sheet to contract radially inward. This contraction causes the sheet to transmit forces to the heart to assist in its natural contraction. A sensing function coordinates the contraction of the sheet with the contraction of the heart. The change in shape of the device is accomplished by distributing pressurized fluid throughout the spaces of the device by way of a network of channels. When pressure is removed from the fluid system, it assumes a deenergized “rest” position in which it does not transmit any forces to the surface of the heart. This property of the device prevents the device from inhibiting the heart's natural contractions in the event of a failure of the device or a loss of hydraulic power.
摘要:
The present invention determines the resonant frequency of a sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency or set of frequencies and a predetermined amplitude. The energizing signal is coupled to the sensor via magnetic coupling and induces a current in the sensor which oscillates at the resonant frequency of the sensor. The system receives the ring down response of the sensor via magnetic coupling and determines the resonant frequency of the sensor, which is used to calculate the measured physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal.
摘要:
A wireless sensor for indicating a physical state within an environment includes a unitary housing defining a cavity. A structure located within the cavity of the housing has elements providing capacitance, the elements being arranged such that the distance and thereby the capacitance of the structure changes when a physical state of the environment changes. The structure has a resonant frequency based at least in part on the capacitance of the structure when in the presence of a fluctuating electromagnetic field. When the sensor is positioned within an environment and is subjected to a fluctuating electromagnetic field, the resonant frequency indicates the physical state of the environment.
摘要:
Aspects of the present invention determine the resonant frequency of a sensor by obtaining sensor signals in response to three energizing signals, measuring the phase of each sensor signal, and using a group phase delay to determine the resonant frequency. The phase difference between the first and second signal is determined as a first group phase delay. The phase difference between the second and third signal is determined as a second group phase delay. The first group phase delay and second group phase delay are compared. Based on the comparison, the system may lock on the resonant frequency of the sensor or adjust a subsequent set of three energizing signals.
摘要:
A pressure cavity is durable, stable, and biocompatible and configured in such a way that it constitutes pico to nanoliter-scale volume. The pressure cavity is hermetically sealed from the exterior environment while maintaining the ability to communicate with other devices. Mi cromachined, hermetically-sealed sensors are configured to receive power and return information through direct electrical contact with external electronics. The pressure cavity and sensor components disposed therein are hermetically sealed from the ambient in order to reduce drift and instability within the sensor. The sensor is designed for harsh and biological environments, e.g. intracorporeal implantation and in vivo use. Additionally, novel manufacturing methods are employed to construct the sensors.