Abstract:
A transparent specimen slide on which the range and the magnitude of the near-surface electrostatic forces can be influenced and set during a process of producing the specimen slide. The specimen slide has a surface on the supporting side and a surface facing away from the supporting side and at least three layers: an electrically insulating first layer, a silicon-containing second layer arranged on the first layer, and an electrically insulating third layer arranged on the second layer. An interface is formed between the first and second layers and between the second and third layers with a first surface charge density. The interface between the second and third layers has a second surface charge density. The first and second surface charge densities have the same or different signs.
Abstract:
The driver circuit comprises a first node (J1), which is connected to a first terminal of the Pockels cell (CP), a second node (J2), which is connected to a second terminal of the Pockels cell (CP), wherein the first node (J1) is connected to a first potential (+HV) via a first switching unit (S1) and the second node (J2) is connected to the first potential (+HV) via a second switching unit (S2) and wherein the first node (J1) is connected to a second potential (−HV) via a first resistance (R1) and the second node (J2) is connected to the second potential (−HV) via a second resistance (R2); and wherein the first node (J1) is connected to the second node (J2) via a series circuit comprising a third resistance (R3) and an inductance (L1).
Abstract:
The invention relates to a compound of formula Ia or Ib wherein R1 represents —CO2R3, —COR4 or —R5, wherein R3 represents unsubstituted or substituted C1-C6 alkyl, R4 represents hydrogen, unsubstituted or substituted C1-C6 alkyl, and R5 represents hydrogen, unsubstituted or substituted C1-C6 alkyl, R2 represents —N+(R6)(R7)(R8)X− or a nitro group, wherein R6, R7, R8 independently of each other represent unsubstituted or substituted C1-C6 alkyl or unsubstituted or substituted —(CH2)n- with n=1 to 12 provided that at least two of the substituents R6R7R8 are C1-C6 alkyl, and X− represents a halide, sulphonate, unsubstituted or substituted acetate, sulphate, hydrogen sulphate, nitrate, perchlorate, or oxalate.
Abstract:
A grid sensor for measuring the phase distribution of a multiphase substance mixture with gaseous and liquid components in the presence of a highly conductive phase (such as salt water or liquid metal) employs 3 superposed electrode planes and an electronic measuring device. Application areas include determination of the liquid distribution and the fill level in containers, as well as the investigation of gas-liquid multiphase flows, in particular in pipelines, e.g. in petroleum production and processing.
Abstract:
A triaxial constructed needle probe for reliable differentiation of multiphase media, comprises a probe body having a central light conductor having a metallic surface and a distal end of which is to be inserted in the medium, a first electrically insulating sheath disposed around the optical fiber, a hollow cylindrical shield electrode arranged around the first insulating sheath, a second electrically insulating sheath arranged around the shield electrode, and a hollow cylindrical reference electrode arranged around the second insulating sheath, as well as a measuring circuit for measuring the optical refractive index and electrical conductivity of the medium.
Abstract:
Extremely ultrashort and short-wave light pulses are generated with the aid of the traveling-wave Thomson scattering process. Dispersive elements are arranged between an electron, particle, or radiation source, which is synchronized with a laser system, and an optical element that focuses in a direction. The device is used to superpose a pulse-front tilted light pulse of high power with an ultrashort pulse of relativistic electrons in a laser-line focus. By varying the laser pulse-front tilt, narrow-band radiation pulses in a wide wavelength range from EUV to X-ray wavelengths and having a high number of protons are obtained, and the bandwidth and coherence properties can also be modified. The system can be used, among other things, in EUV lithography, in the planning and optimal design of laser systems and electron sources, in material analysis by phase contrast imaging, and in superconductor research. The assembly is smaller and cheaper than current comparables.
Abstract:
A grid sensor significantly reduces the complexity of a production process. The cost for installing and running the grid sensor are significantly reduced and the service life, pressure and heat resistance of the grid sensor can be significantly increased over previous grid sensors. Channels, which are wider than the diameter of the wire electrodes and have a depth of less than half the thickness of the sensor board, run outwardly from the edge of the measurement cross section in the sensor board. The channels are coated by a metal layer and the wire electrodes are inserted into the periphery of the measurement cross section. The two ends of the electrode, each in one of the opposite channels, and the electrodes are fixed in the channels by means of a conductive sealing compound. In each channel, the conductive sealing compound terminates in a planar fashion with the upper side of the sensor board, and the sensor board is clamped between two clamping plates.