Abstract:
A blade for a rotor of a wind turbine has a root region with a substantially circular or elliptical profile closest to the hub and an airfoil region with a lift generating profile furthest away from the hub. A transition region has a base part with an inner dimension that varies linearly in the radial direction of the blade in such a way that an induction factor of the first base part without flow altering devices at a rotor design point deviates from a target induction factor. The first longitudinal segment is provided with a number of first flow altering devices arranged so as to adjust the aerodynamic properties of the first longitudinal segment to substantially meet the target induction factor at the design point.
Abstract:
A blade for a rotor of a wind turbine is manufactured with a root region with a substantially circular or elliptical profile closest to the hub, an airfoil region with a lift generating profile furthest away from the hub and a transition region having a profile gradually changing the root region to the airfoil region. A first blade design is used for the first base part on a first longitudinal section of an airfoil region of a second blade, so that an induction factor of the first base part on the second blade deviates from a target induction factor. The first longitudinal section of the second blade is provided with flow altering devices so as to adjust the aerodynamic properties of the first longitudinal segment to substantially meet the target induction factor at the design point on the second blade.
Abstract:
A blade, for a rotor of a wind turbine has a profiled contour in a radial direction is divided into a root region with a substantially circular or elliptical profile closest to the hub and an airfoil region with a lift generating profile furthest away from the hub. A transition region between the root region and the airfoil region has a profile gradually changing in the radial direction from the circular or elliptical profile of the root region to the lift generating profile of the airfoil region, and the airfoil region comprises at least a first longitudinal segment extending at least 20% of a longitudinal extent of the airfoil region. The first longitudinal segment has a first base part with a cross-sectional profile such that, when impacted by an incident airflow at an angle of attack of 0 degrees has a lift coefficient, which is 0 or less.
Abstract:
A method for monitoring and controlling that a plurality of layers (2) of material comprising fibre for the manufacturing of a part are located correctly in a mould (1) for said part and/or correctly relative to each other in said mould, comprises determining the position in the mould of each marking (7) on each layer (2) of fibre material and/or the positions of the markings on different layers of fibre material relative to each other, comparing the determined position in the mould (1) of each marking (7) on each layer (2) of fibre material and/or the positions of the markings on said different layers of fibre material relative to each other with predetermined reference positions for said markings for the part to be manufactured, and performing correction of the position of that or those layers (2) of fibre material for which the determined positions for the markings (7) thereon and the predetermined reference positions for said markings do not correspond with each other. A system comprises means for carrying through said method.
Abstract:
A method of manufacturing a wind turbine blade shell part comprising fibre material impregnated with cured resin is described. The method comprises the steps of: a) providing a first mould part having a first forming surface with a contour that defines at least a part of an outer surface of turbine blade shell part, b) arranging fibre material in the first mould part, the fibre material comprising fibres of a magnetisable material, c) providing a resin in the first mould part simultaneous with and/or subsequent to step b), and d) curing the resin in order to form the wind turbine blade shell part or wind turbine blade. The fibre material is retained against the first forming surface by use of magnet means during step b) and/or step c).
Abstract:
A blade for a rotor of a wind turbine having a substantially horizontal rotor shaft, the rotor comprising a hub, from which the blade extends substantially in a radial direction when mounted to the hub. The blade comprises a main blade part having a profiled contour comprising a pressure side and a suction side as well as a leading edge and a trailing edge with a chord extending between the leading edge and the trailing edge. The profiled contour generates a lift when being impacted by an incident airflow. The profiled contour is divided in the radial direction into a root region with a substantially circular or elliptical profile closest to the hub, the substantially circular or elliptical profile having a diameter, an airfoil region with a lift generating profile furthest away from the hub, and a transition region between the root region and the airfoil region. The profile of the transition region gradually changes in the radial direction from the circular or elliptical profile of the root region to the lift generating profile of the airfoil region. The blade further comprises a first auxiliary airfoil having a first pressure side and a first suction side as well as a first chord extending between a first leading edge and a first trailing edge. The first chord has a length that is 75% or less of the diameter of the substantially circular or elliptical profile in the root region and the first auxiliary airfoil is arranged so that it extends in the radial direction along at least a part of the root region of the main blade part with a distance there between.
Abstract:
The present invention concerns a method of producing a lightning diverter for conducting a lightning-induced electrical current, which is to be placed on structures such as wings on wind turbines, aircraft components, radomes and the like with the purpose of lightning protection. The method comprises the steps of making a plurality of holes in a plate of an electrically conductive material, filling said holes at least partly with one or more electrically non-conductive materials, and then finally dividing the plate—preferably into strips. The lightning diverter obtained hereby consists of a layer of electrically non-conductive material with a plurality of isolated segments of electrically conductive material.The invention further relates to a diverter strip with isolated segments of concave shapes being advantageous because of the good connection between the segments and the non-conductive material.
Abstract:
A method of producing a composite structure comprising fibre reinforced material and having a longitudinal direction is described. The method comprises the following steps: a) manufacturing a first structure comprising a first cured composite part having a first thickness and a longitudinal direction with a first end, and a number of first fibre layers extending from the first end, b) manufacturing a second structure comprising a second cured composite part having a second thickness and a longitudinal direction with a second end, and a number of second fibre layers extending from the second end, and c) arranging the first structure and the second structure so that the first end faces towards the second end, and arranging the first fibre layers and the second fibre layers so that at least a part of the first fibre layers overlap at least a part of the second fibre layers in the longitudinal direction, d) supplying liquid resin in order to impregnate the first fibre layers and the second fibre layers, and e) curing the liquid resin in order to form the composite structure comprising the first cured composite part, the second cured composite part, and an intermediate composite part including the first fibre layers and the second fibre layers.
Abstract:
A method for producing a composite structure and a composite structure obtained by the method is described. The method comprises the following steps: a) providing a mold comprising a rigid mold part and a flexible vacuum bag, b) placing a fiber insertion in the mold part, the fiber insertion including a plurality of fiber layers and, when placed in the mold part, having an upper surface and a lower surface as well as a first side and a second side, the fiber insertion including a first zone at the first side and a second zone at the second side, the first zone and the second zone being separated by an intermediate zone, c) placing an upper distribution medium above the intermediate zone of the fiber insertion, the distribution medium comprising a resin distribution network for distributing resin along the upper distribution medium, d) placing a number of resin inlet channels above the upper distribution medium for supplying liquid resin to the resin distribution network, e) placing a first vacuum outlet at least partially overlapping the first zone of the fiber insertion and a second outlet at least partially overlapping the second zone of the fiber insertion, f) placing the vacuum bag on top of the mold part, thus sealing the vacuum bag against the mold part to define a mold cavity, g) evacuating the mold cavity, h) connecting a source of uncured fluid resin to the resin inlet channels so as to feed uncured resin to the resin distribution network in order to fill the mold cavity and to impregnate at least the fiber insertion and the upper distribution medium with uncured resin, and i) allowing the resin to cure in order to form the composite structure.
Abstract:
The invention relates to a method of lightning-proofing a blade (1) on a wind-energy plant, which blade comprises a blade shell (2) configured essentially as a fiber-reinforced laminate, which laminate comprises electrically conductive fibers, wherein the blade comprises at least one lightning arrester (9) configured for conducting lightning current, including preferably to ground. The method comprises that the electrically conductive fibers are connected to each other, and that at least one metallic receptor (4, 24, 25) is arranged for capturing lightning current at or in proximity of the external face of the blade; and that the receptor and the fibers are connected to the lightning arrester for equalizing the difference in potential between the lightning arrester and the electrically conductive fibers. When the electrically conductive fibers are connected to each other, the fibers will cooperate on the conduction of a possible lightning current to prevent the current from running in individual fibers. Simultaneously the metallic receptor will serve as the primary lightning capturing device and reduce the risk of lightning striking the laminate. The receptor being connected to the lightning arrester, the current will predominately be conducted to ground, while the risk of transfer to the laminate is minimized in that a possible difference in potential between fibers and lightning arrester has been equalized.