Abstract:
A printing device, a patterning method using the same and a method of fabricating an LCD device using the same are disclosed. The printing device includes a printing roll having a blanket adhered to an outer surface thereof; and an absorption nozzle to absorb solvent from the blanket. The absorption nozzle may include an absorber having a slit, a vacuum controller connected to the absorber, and a pipe connected to the vacuum controller.
Abstract:
Provided is a method of producing 1,3-propanediol by culturing a recombinant strain in which the glycerol oxidative pathway had been blocked, and more particularly a method of producing 1,3-propanediol by two-step culture of a recombinant strain in which the oxidative pathway that produces byproducts in the glycerol metabolic pathway had been blocked. When the recombinant strain in which the glycerol oxidative pathway that produces byproducts had been blocked is cultured in two steps, 1,3-propanediol can be produced with improved yield without producing products that result in an increase in purification costs.
Abstract:
A printing plate and a method of fabricating an LCD device are disclosed. The printing plate includes convex and concave portions, and a blanket support formed in the concave portion to prevent the bottom of the concave portion from being directly in contact with a pattern material coated on a blanket of a printing roll. The blanket support is additionally formed in the concave portion of the printing plate to prevent the pattern material coated on the blanket of the printing roll from being directly in contact with the bottom of the concave portion. In this case, the pattern material can be prevented from being transferred onto the printing plate in an undesired pattern. As a result, it is possible to form a precise pattern.
Abstract:
Disclosed is a solvent for printing which comprises a first solvent selected from the group consisting of acetone, methyl ethyl ketone, methyl acetate, ethyl acetate, methanol and mixtures thereof, and a second solvent selected from the group consisting of propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), isopropanol, butyl acetate, ethyl-3-ethoxypropionate and mixtures thereof. Further disclosed are a pattern composition for printing comprising the solvent for printing, and a patterning method using the composition. The use of the solvent for printing enables formation of an accurate pattern.
Abstract:
A liquid crystal display (LCD) panel is disclosed. The LCD panel includes a plurality of pixels arranged in rows and columns, a first sub gate-line coupled to first row-pixels that are adjacent to a lower side of the first sub gate-line, a second sub gate-line coupled to second row-pixels that are adjacent to an upper side of the second sub gate-line, a plurality of gate-lines between the first sub gate-line and the second sub gate-line, a plurality of even data-lines coupled to first column-pixels that are adjacent to the even data-lines, and a plurality of odd data-lines coupled to second column-pixels that are adjacent to the odd data-lines. Here, each gate-line of the plurality of gate lines is coupled to first row-pixels that are adjacent to a lower side of the gate-line and second row-pixels that are adjacent to an upper side of the gate-line.
Abstract:
An LCD and a driving method thereof include: data writing for applying a common voltage and a data voltage to a plurality of pixels; and sustaining for applying a shifted common voltage shifted by a predetermined level from the common voltage to the plurality of pixels for a sustain period during which the plurality of pixels emit light, corresponding to the data voltage. The shifted common voltage is shifted to an opposite polarity of a polarity of a gate-off voltage applied to the plurality of pixels to float the plurality of pixels. During a sustain period, a gate-source voltage of the switching transistor can be increased, and accordingly an influence due to the leakage current can be minimized, thereby preventing image deterioration. Further, since capacitance of the sustain capacitor can be reduced so that power consumption of the LCD can be reduced.
Abstract:
Disclosed is a solvent for printing which comprises a first solvent selected from the group consisting of acetone, methyl ethyl ketone, methyl acetate, ethyl acetate, methanol and mixtures thereof, and a second solvent selected from the group consisting of propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), isopropanol, butyl acetate, ethyl-3-ethoxypropionate and mixtures thereof. Further disclosed are a pattern composition for printing comprising the solvent for printing, and a patterning method using the composition. The use of the solvent for printing enables formation of an accurate pattern.
Abstract:
A liquid crystal display apparatus and a method of driving the liquid crystal display apparatus, which commonly boosts pixels of a first group and commonly boosts pixels of a second group. The liquid crystal display apparatus includes a first group of pixels for displaying an image and a second group of pixels for displaying an image. Each pixel of the first and second groups includes a storage capacitor for storing a data voltage. The liquid crystal display apparatus further includes a first storage common voltage line connected to storage capacitors of the pixels of the first group of pixels, a second storage common voltage line connected to storage capacitors of the pixels of the second group of pixels. A first storage common voltage is supplied to the pixels of the first group through the first storage common voltage line, and a second storage common voltage is supplied to the pixels of the second group through the second storage common voltage line.
Abstract:
A liquid crystal display having a plurality of pixels and blocks of shift registers that are connected to one another for temporarily storing data signals and from which the data signal outputs are sequentially applied to drive the pixels. Each of the shift registers receives a shift start signal and at least one of first and second clock signals, of which phases are opposite to each other, and a high period of the shift start signal corresponds to two cycles of the respective clock signals so that each pixel is pre-charged from the data signal from previous block of registers before receiving the data signal for the current block thereby preventing a boundary between blocks from being visually recognized.
Abstract:
A thin film transistor (TFT) substrate that is capable of providing a wide viewing angle and high contrast ratio without a decrease is aperture ratio is presented. The TFT substrate may be, for example, used with a patterned vertical alignment (PVA) mode LCD. The TFT substrate includes gate lines and data lines extending in non-parallel directions and a pixel electrode formed in a pixel region. The pixel region has two transmission regions separated from each other by a reflection region, and at least one of the gate lines is formed in the reflection region. A storage capacitor may also be formed in the reflection region. This configuration avoids the use of a bridge region between the two transmission regions that is responsible for aperture ratio decrease in the conventional configuration.