Abstract:
A thermally compliant multi-layer wiring structure on a semiconductor chip is described. The multi-layer wiring structure incorporates an “empty” or air gap under the interconnect wiring and does not allow any thermally induced strains to be transmitted to the interconnecting solder balls. This design is to be used in chip scale packaging applications where printed circuit technology is used as the next level of package.
Abstract:
An optical coupling device includes a substrate loaded with a first optical module and IC drivers, and a second optical module intending to couple with the first optical module. The substrate defines an electrical connection port at one end thereof, the first optical module is located at another end of the substrate. The second optical module includes a first insulating holder and fiber cores embedded in the insulating holder. The first optical module includes a second insulating holders and VCSELS and PDS embedded with the second insulating holder, the fiber cores are directly coupled with VCSELS and PDS to transmit light lines therein.
Abstract:
The present invention is directed to a system and method for visualizing information, e.g., information regarding a sporting event. The method may comprise identifying an event type and generating a plurality of buttons, the plurality of buttons arranged in a button hierarchy. A first level of the button hierarchy comprising one or more first level buttons is displayed with a lens further displayed on a given one of the one or more first level buttons, the lens operative to present first level data for the given first level button.
Abstract:
A slide cover for enclosing a region comprising an active region on a slide is provided. A slide cover and a slide are also provided. A slide cover for enclosing a region comprising an active region on a slide, where the slide is placed in a clamshell slide holder is also provided.
Abstract:
The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects. In other embodiments, the entire rear door, or each segment of the rear door, can be configured to slide open and closed like a drawer.
Abstract:
A new method to form an integrated circuit device is achieved. The method comprises providing a substrate. A sacrificial layer is formed overlying the substrate. The sacrificial layer is patterned to form temporary vertical spacers where conductive bonding locations are planned. A conductive layer is deposited overlying the temporary vertical spacers and the substrate. The conductive layer is patterned to form conductive bonding locations overlying the temporary vertical spacers. The temporary vertical spacers are etched away to create voids underlying the conductive bonding locations.
Abstract:
A folding bed frame has a pair of support tubes, two pairs of connection tubes, three pairs of leg sets, a plurality of positioning devices, a plurality of connection bars, a plurality of angle plates, and a plurality of T-shaped plates. Each leg set has a generally S-shaped rod, the generally S-shaped rod having a lower portion, a middle portion and an upper portion, a curved rod disposed on the middle portion of the generally S-shaped rod, a leg rod having an upper end disposed on a bottom of the middle portion of the generally S-shaped rod, and two of the connection bars connected to one of the curved rods, one of the generally S-shaped rods, and one of the leg rods. Two angle plates are connected to one curved rod and one connection tube. Two T-shaped plates are connected to one curved rod and two connection tubes. Each positioning device is disposed in the corresponding connection tube to position the corresponding connection tube and the corresponding support tube.
Abstract:
Methods and apparatus to support the execution of a managed application that is linked to a native library or application are disclosed. The disclosed methods and apparatus support a virtual machine that is associated with the same ISA as the executing platform, while the ISA of the native library or application is of a different ISA. The disclosed methods and apparatus also support the execution of a managed application that is linked with several native libraries or applications that are associated with several different ISAs respectively.
Abstract:
A hardware-based failover scheme enabling rapid end-to-end recovery is provided. Hardware logic periodically generates, transmits, receives, and processes heartbeat packets, sent from one end of the communications network to another, and then returned back. If a communications network node or communications link failure is being experienced along the transport path, then the hardware logic rapidly swaps the affected traffic conveyed to a pre-established backup transport path, typically within microseconds. Advantages are derived from the rapid failover effected end-to-end which enables continued delivery of provisioned communications services improving the resiliency and/or availability of a communications network.
Abstract:
A packet switching node in a pipelined architecture processing packets received via an input port associated with the packet switching node performs a method, which includes: determining a packet frame type; selectively extracting packet header field values specific to a packet frame type, including packet addressing information; ascribing to the packet a preliminary action to be performed; searching packet switching information tracked by the packet switching node based on extracted packet addressing information; formulating a preliminary switch response for the packet; classifying the packet into a packet flow; modifying the preliminary switch response in accordance with one of the preliminary action, the packet flow into which the packet was classified, and a default port action corresponding to the input port; modifying the packet header in accordance with one of the preliminary action, the packet flow, and the default port action; and processing the packet.