Abstract:
Radiation-curable compositions comprising a) compounds having at least two carbon-carbon double bonds with which it is possible for primary or secondary amino groups to form adducts in the form of a Michael-analogous addition reaction (referred to in short below as activated double bonds) b) capped amino compounds which on irradiation with high-energy light liberate amino compounds having primary, secondary or primary and secondary amino groups, the overall number of hydrogen atoms bonded in the amino groups (amine hydrogen atoms) being at least 2.
Abstract:
Radiation-curable acrylates are prepared by a process in which, in a 1st stage, a hydroxy compound is reacted with acrylic acid or methacrylic acid and, in or before a 2nd stage, the reaction product of the 1st stage is then reacted with an epoxy compound and compounds having one or more primary or secondary amino groups are added in the 2nd stage and the reaction in the 2nd stage is continued, after the addition of these compounds, until the acid number of the reaction mixture has decreased by at least 3 mg KOH/g of reaction mixture from the time of the addition of these compounds.
Abstract:
Photopolymerizable laminates suitable for producing flexible and resilient printing plates carry on a dimensionally stable base at least one intermediate layer and on top thereof a photopolymerizable layer which consists essentially of a mixture of a water-soluble copolymer or derivative of polyvinyl alcohol, a specific copolymerizable mono-functional (meth)acrylate, a photoinitiator and a thermal polymerization inhibitor.
Abstract:
The present invention relates to mixtures comprising specifically synthesized radiation-curable, high-functionality, highly branched or hyperbranched polyurethane (meth)acrylates, to processes for preparing them and to their use.
Abstract:
The invention relates to a radiation-curable laminated sheet or film comprising at least one substrate layer and a top layer which comprises a radiation-curable material having a glass transition temperature below 50° C. and having a high double bond density, processes for the production thereof and the use thereof.
Abstract:
A process for producing moldings, in which a solventborne or aqueous, pigmented coating composition (P) and a free-radically crosslinkable coating composition (K), which after crosslinking to completion produces a transparent coating (KE) are applied to a support sheet, a dried but as yet not completely crosslinked coating (KT) is produced from the coating composition (K), the coated support sheet is shaped and is injection backmolded or foam-backed with a liquid polymeric material, and the coating (KT)—if this has not already taken place—is cured or aftercured; the crosslinkable coating composition (K) comprising a free- radically crosslinkable component (KK) which comprises carbamate and/or biuret and/or allophanate and/or urea and/or amide groups.
Abstract:
The invention relates to a radiation-curable laminated sheet or film comprising at least one substrate layer and a top layer which comprises a radiation-curable material having a glass transition temperature below 50° C. and having a high double bond density, processes for the production thereof and the use thereof.
Abstract:
The invention relates to a radiation-curable laminated sheet or film comprising at least one substrate layer and a top layer which comprises a radiation-curable material having a glass transition temperature below 50° C. and having a high double bond density, processes for the production thereof and the use thereof.