Abstract:
A device for agitating and collecting biological liquid samples comprises an agitator of racks of tubes, a sampling apparatus capable of collecting a biological liquid sample in a tube, and a changer capable of gripping a tube on a rack received in the agitator and moving it to the sampling apparatus. The agitator is capable of agitating at least three racks simultaneously, and the device also comprises a scheduler capable of determining destination data for a tube and destination data for the rack which receives this tube, and of determining for each tube a final location based on the destination data of the tube and the destination data of the racks received in the device, which final location designates a rack, received on the agitator and a position on this rack and can be different from the location of the tube when the rack that received it has been introduced into the device, and arranged to control the changer in order to grip a tube, present it to the sampling apparatus and replace it after sampling at the final location.
Abstract:
A method for identifying a particle contained in a sample, including illuminating the sample using a light source, the light source producing an incident light wave propagating toward the sample, then acquiring, using a matrix-array photodetector, an image of the sample, the sample being placed between the light source and the photodetector such that the matrix-array photodetector is exposed to a light wave that is the result of interference between the incident light wave and a diffraction wave produced by each particle. The method further includes applying a numerical reconstruction algorithm to the image acquired by the photodetector, to estimate a characteristic quantity of the light wave reaching the detector, at a plurality of distances from the detector. The variation in the characteristic quantity as a function of distance allows the particle to be identified.
Abstract:
The invention relates to a sampling valve and to a device equipped with such a valve notably allowing haematogy Ineasttrenreaat to be taken from a blood sample. The valve comprise two external parts, one internal part clamped between said exterrtal parts, and means for regulating the relative angular position of these parts about to axis of rotation. The mienial part has opposite surfaces pressing in a sealed and sliding manner against adjacent surfaces of the external parts. The external parts comprise orifices, loops and ducts, said loops and said ducts being arranged in such a way as to communicate selectively with orifices passing through the internal part. The valve parts have no aliquot return groove or recess or labyrinth, thereby eliminating regions of turbulence. The valve is characterized in that two of the parts are able to rotate about the axis of rotation with respect to one of the said pans which is stationary, the rotary parts preferably being the external parts. The sampling valve also makes it possible to form calibrated volumes of a sample taken in the loops and/or the orifices of the internal pan.
Abstract:
The present invention relates to a flow assay method in a liquid medium for an object (or element) of interest via the formation of aggregates of particles that are surface-functionalized by at least one functionalizing molecule, or receptor, specific for said object of interest.
Abstract:
The present application relates to: (i) a sampler device for taking a sample of biological fluid, which comprises a capillary component, and a base rigidly connected to said capillary component and provided with a first connector capable of being reversibly attached in a leaktight manner to a second connector of a dispensing device; (ii) a dispensing device which also comprises means for transferring diluting fluid which open into said second connector. The application also relates to a biological analysis apparatus implementing the sampler and dispensing devices and to a method for sampling and dispensing a biological fluid.