Abstract:
The non-volatile semiconductor memory device has a circuit which maintains and holds the potentials of bit lines, and either ones of even-bit lines or odd-bit lines are connected to the circuit. When the bit line potential holding circuit is connected to even-bit lines and a block copy is performed, data is first outputted to the even-bit lines, and after the potential of the even-bit line is determined, the bit line potential holding circuit operates. Then, biasing of the potential of the even-bit lines is carried out by the bit line potential holding circuit, the potentials of the bit lines are maintained and held. At the same time, data is outputted to the odd-bit lines and the potentials of the odd-bit lines are determined. Then, a program voltage is supplied to a selected word line, and data is simultaneously written (programmed) in the memory cells connected to the even-bit lines, and the memory cells connected to the odd-bit lines.
Abstract:
A semiconductor memory device includes a memory cell array, data buffer, and column switch. The data buffer senses the potential of a bit line to determine data in a selected memory cell and hold readout data in a read. The data buffer detects both whether the whole data buffer holds “0” data and whether the whole data buffer holds “1” data. The column switch selects part of the data buffer and connects the part to a bus.
Abstract:
A semiconductor memory device includes a memory cell array, data buffer, and column switch. The data buffer senses the potential of a bit line to determine data in a selected memory cell and hold readout data in a read. The data buffer detects both whether the whole data buffer holds “0” data and whether the whole data buffer holds “1” data. The column switch selects part of the data buffer and connects the part to a bus.
Abstract:
A semiconductor memory device includes a memory cell array, data buffer, and column switch. The data buffer senses the potential of a bit line to determine data in a selected memory cell and hold readout data in a read. The data buffer detects both whether the whole data buffer holds “0” data and whether the whole data buffer holds “1” data. The column switch selects part of the data buffer and connects the part to a bus.
Abstract:
A semiconductor memory device includes a memory cell array, data buffer, and column switch. The data buffer senses the potential of a bit line to determine data in a selected memory cell and hold readout data in a read. The data buffer detects both whether the whole data buffer holds “0” data and whether the whole data buffer holds “1” data. The column switch selects part of the data buffer and connects the part to a bus.
Abstract:
An aspect of the present invention provides a nonvolatile memory that includes a memory cell array including a data storage area to store a data, and a data invert flag storage area to store a data invert flag indicating whether or not the data is inverted. The memory cell array outputs selected data and a data invert flag related to the selected data. A state machine determines whether or not the number of memory cells to which a bias voltage is applied is equal to or greater than a predetermined number when writing data into the memory cell array. The state machine instructs a data controller to transfer inverted data and a data invert flag if it is equal to or greater than the predetermined number.
Abstract:
A non-volatile semiconductor memory device capable of performing page programming at high speeds is provided. This nonvolatile memory device includes a cell array with a matrix of rows and columns of electrically writable and erasable nonvolatile memory cells, and a write control circuit which writes or “programs” one-page data into this cell array at a plurality of addresses within one page. The write control circuit is operable to iteratively perform iteration of a write operation for the plurality of addresses corresponding to one page and iteration of a verify-read operation of the plurality of addresses after writing until verify-read check is passed with respect to every address involved. Regarding an address or addresses with no cells to be written any more, the write control circuit skips the write operation and the after-write verify-read operation.
Abstract:
A non-volatile semiconductor memory device comprises a plurality of blocks each having a plurality of memory cells to be erased at a time and a decoder for selecting the memory cells, each of the blocks having a block decoder for latching a selection signal thereof in pre-programming and for selecting all of the latched blocks by the selection signal at the same time, a sense amplifier, and an address control circuit for controlling a sequence, the sequence including counting addresses of the memory cells in erasing and erasing all of the selected memory cells after pre-programming, all of the blocks having the latched selection signal being controlled to be collectively erased by the address control circuit.
Abstract:
A semiconductor integrated circuit device includes a first memory cell array corresponding to bank 0, a second memory cell array corresponding to bank 1, first address transition signal generating circuits which detect transitions of input addresses and generate first address transition signals, a second address transition signal generating circuit which pre-detects an end of automatic execution of bank 0 or bank 1 and generates a second address transition signal, and a read start trigger output circuit. The read start trigger output circuit outputs a read start trigger signal on the basis of the first address transition signals and the second address transition signal.
Abstract:
An aspect of the present invention provides a nonvolatile memory that includes a memory cell array including a data storage area to store a data, and a data invert flag storage area to store a data invert flag indicating whether or not the data is inverted. The memory cell array outputs selected data and a data invert flag related to the selected data. A state machine determines whether or not the number of memory cells to which a bias voltage is applied is equal to or greater than a predetermined number when writing data into the memory cell array. The state machine instructs a data controller to transfer inverted data and a data invert flag if it is equal to or greater than the predetermined number.