Abstract:
A set of optical rule checker (ORC) markers are identified in a simulated lithographic pattern generated for a set of data preparation parameters and lithographic processing conditions. Each ORC marker identifies a feature in the simulated lithographic pattern that violates rules of the ORC. A centerline is defined in each ORC marker, and a minimum dimension region is generated around each centerline with a minimum width that complies with the rules of the ORC. A failure region is defined around each ORC marker by removing regions that overlap with the ORC marker from the minimum dimension region. The areas of all failure regions are added to define a figure of demerit, which characterizes the simulated lithographic pattern. The figure of demerit can be evaluated for multiple simulated lithographic patterns or iteratively decreased by modifying the set of data preparation parameters and lithographic processing conditions.
Abstract:
Mechanisms are provided for characterizing long range variability in integrated circuit manufacturing. A model derivation component tests one or more density pattern samples, which are a fabricated integrated circuits having predetermined pattern densities and careful placement of current-voltage (I-V) sensors. The model derivation component generates one or more empirical models to establish range of influence of long range variability effects in the density pattern sample. A variability analysis component receives an integrated circuit design and, using the one or more empirical models, analyzes the integrated circuit design to isolate possible long range variability effects in the integrated circuit design.
Abstract:
Impact on parametric performance of physical design choices for transistors is scored for on-current and off-current of the transistors. The impact of the design parameters are incorporated into parameters that measure predicted shift in mean on-current and mean off-current and parameters that measure predicted increase in deviations in the distribution of on-current and the off-current. Statistics may be taken at a cell level, a block level, or a chip level to optimize a chip design in a design phase, or to predict changes in parametric yield during manufacturing or after a depressed parametric yield is observed. Further, parametric yield and current level may be predicted region by region and compared with observed thermal emission to pinpoint any anomaly region in a chip to facilitate detection and correction in any mistakes in chip design.
Abstract:
A method of automatic calibration of a design for manufacturing (DfM) simulation tool includes providing, as a first input, one or more defined rules for each of one or more semiconductor device levels to be simulated by the tool, and providing, as a second input, a plurality of defined feature size threshold ranges and increments for use in histogram generation of a number of failures with respect to a reference circuit; providing, as a third input, the reference circuit; executing the defined rules for the semiconductor device levels to be simulated, and outputting a fail count for the reference circuit at each defined threshold value, thereby generating histogram data of fail count versus threshold for the reference circuit; and providing, as a fourth input, a defined fail count metric, thereby calibrating the DfM tool for use with respect to a target circuit.
Abstract:
Disclose are embodiments of an integrated circuit design method based on a combination of manufacturability, test coverage and, optionally, diagnostic coverage. Design-for manufacturability (DFM) modifications to the layout of an integrated circuit can be made in light of test coverage. Alternatively, test coverage of an integrated circuit can be established in light of DFM modifications. Alternatively, an iterative process can be performed, where DFM modifications to the layout of an integrated circuit are made in light of test coverage and then test coverage is altered in light of the DFM modifications. Alternatively, DFM modifications to the layout of an integrated circuit can be made in light of test coverage and also diagnostic coverage. In any case, after making DFM modifications and establishing test coverage, any unmodified and untested nodes (and, optionally, any unmodified and undiagnosable tested nodes) in the integrated circuit can be identified and tagged for subsequent in-line inspection.
Abstract:
Disclosed are a system and a method of correcting systematic, design-based, parametric variations on integrated circuit chips to minimize circuit limited yield loss. Processing information and a map of a chip are stored. The processing information can indicate an impact, on a given device parameter, of changes in a value for a specification associated with a given process step. The map can indicate regional variations in the device parameter (e.g., threshold voltage). Based on the processing information and using the map as a guide, different values for the specification are determined, each to be applied in a different region of the integrated circuit chip during the process step in order to offset the mapped regional parametric variations. A process tool can then be selectively controlled to ensure that during chip manufacturing the process step is performed accordingly and, thereby to ensure that the regional parametric variations are minimized.
Abstract:
Mechanisms are provided for characterizing long range variability in integrated circuit manufacturing. A model derivation component tests one or more density pattern samples, which are a fabricated integrated circuits having predetermined pattern densities and careful placement of current-voltage (I-V) sensors. The model derivation component generates one or more empirical models to establish range of influence of long range variability effects in the density pattern sample. A variability analysis component receives an integrated circuit design and, using the one or more empirical models, analyzes the integrated circuit design to isolate possible long range variability effects in the integrated circuit design.
Abstract:
A method for implementing systematic, variation-aware integrated circuit extraction includes inputting a set of processing conditions to a plurality of variation models, each model corresponding to a separate systematic, parametric variation associated with semiconductor manufacturing of an integrated circuit layout; generating, for each variation model, a netlist update attributable to the associated variation, wherein the netlist update is an update with respect to an original netlist extracted from the integrated circuit layout; and storing the netlist updates generated for each of the processing conditions.
Abstract:
IC chip design modeling using perimeter density to an electrical characteristic correlation is disclosed. In one embodiment, a method may include determining a perimeter density of conductive structure within each region of a plurality of regions of an integrated circuit (IC) chip design; correlating a measured electrical characteristic within a respective region of an IC chip that is based on the IC chip design to the perimeter density; and modeling the IC chip design based on the correlation.
Abstract:
Disclosed are embodiments of forming an integrated circuit with a desired decoupling capacitance and with the uniform and targeted across-chip polysilicon perimeter density. The method includes laying out functional blocks to form the circuit according to the design and also laying out one or more decoupling capacitor blocks to achieve the desired decoupling capacitance. Then, local polysilicon perimeter densities of the blocks are determined and, as necessary, the decoupling capacitor blocks are reconfigured in order to adjust for differences in the local polysilicon perimeter densities. This reconfiguring is performed in a manner that essentially maintains the desired decoupling capacitance. Due to the across-chip polysilicon perimeter density uniformity, functional devices in different regions of the chip will exhibit limited performance parameter variations (e.g., limited threshold voltage variations). Also disclosed herein are embodiments of an integrated circuit structure formed according to the method embodiments and a design structure for the integrated circuit.