Abstract:
Provided is a phase-change memory device including a phase-change material pattern of which strips are shared by neighboring cells. The phase-change memory device includes a plurality of bottom electrodes arranged in a matrix array. The phase-change material pattern is formed on the bottom electrodes, and the strips of the phase-change material pattern are electrically connected to the bottom electrodes. Each strip of the phase-change material pattern is connected to at least two diagonally neighboring bottom electrodes of the bottom electrodes.
Abstract:
A magnetic tunnel junction device includes a magnetically programmable free magnetic layer. The free magnetic layer includes a lamination of at least two ferromagnetic layers and at least one intermediate layer interposed between the at least two ferromagnetic layers.
Abstract:
Magnetic Random Access Memory (MRAM) devices include a lower electrode and a magnetic tunnel junction on the lower electrode. The magnetic tunnel junction includes a seed layer and a tunneling barrier that is oriented in a same direction as the most closely packed plane direction of the seed layer. An oxide layer may be provided between the lower electrode and the magnetic tunnel junction. The lower electrode may be a titanium-rich TiN layer having more than 50 atomic percent titanium content. Analogous fabrication methods are also described.
Abstract:
A phase-changeable memory device includes a phase-changeable material pattern and first and second electrodes electrically connected to the phase-changeable material pattern. The first and second electrodes are configured to provide an electrical signal to the phase-changeable material pattern. The phase-changeable material pattern includes a first phase-changeable material layer and a second phase-changeable material layer. The first and second phase-changeable material patterns have different chemical, physical, and/or electrical characteristics. For example, the second phase-changeable material layer may have a greater resistivity than the first phase-changeable material layer. For instance, the first phase-changeable material layer may include nitrogen at a first concentration, and the second phase-changeable material layer may include nitrogen at a second concentration that is greater than the first concentration. Related devices and fabrication methods are also discussed.
Abstract:
In one embodiment, a phase-changeable structure can be formed by forming a phase-changeable layer on the lower electrode, forming a conductive layer on the phase-changeable layer, etching the conductive layer using a first etching material to form an upper electrode and etching the phase-changeable layer using a second etching material to form a phase-changeable pattern. The first etching material can include a first component containing fluorine. The second etching material does not contain chlorine.
Abstract:
Magnetic Random Access Memory (MRAM) devices include a lower electrode and a magnetic tunnel junction on the lower electrode. The magnetic tunnel junction includes a seed layer and a tunneling barrier that is oriented in a same direction as the most closely packed plane direction of the seed layer. An oxide layer may be provided between the lower electrode and the magnetic tunnel junction. The lower electrode may be a titanium-rich TiN layer having more than 50 atomic percent titanium content. Analogous fabrication methods are also described.
Abstract:
A method of writing to magnetic random access memory (MRAM) devices is provided. The method includes preparing a digit line disposed on a semiconductor substrate, a bit line crossing over the digit line, and a magnetic tunnel junction (MTJ) interposed between the digit line and the bit line. The MTJ has a pinned layer, a tunneling insulating layer, and a synthetic anti-ferromagnetic (SAF) free layer which are sequentially stacked. In addition, the SAF free layer has a bottom free layer and a top free layer which are separated by an exchange spacer layer. An initial magnetization state of the MTJ is read and compared with a desired magnetization state. When the initial magnetization state is different from the desired magnetization state, a first write line pulse is applied to one of the digit line and the bit line, and a second write line pulse is applied to the other of the digit line and the bit line, thereby changing the magnetization state of the MTJ. The MTJ may be disposed at an angle equal to or greater than 0° and less than 90° to a line to which the second write line pulse is applied.
Abstract:
Phase-changeable memory devices include a lower electrode electrically connected to an impurity region of a transistor in a substrate and a programming layer pattern including a first phase-changeable material on the lower electrode. An adiabatic layer pattern including a material having a lower thermal conductivity than the first phase-changeable material is on the programming layer pattern and an upper electrode is on the adiabatic layer pattern.
Abstract:
In a program method for a multi-level phase change memory device, multi-level data to be programmed in a selected memory cell is received, and a program signal is applied to the selected memory cell according to the received multi-level data. Herein, a rising time of the program signal is set to be longer than a falling time of the program signal.
Abstract:
A method of fabricating a phase change memory device includes the use of first, second and third polishing processes. The first polishing process forms a first contact portion using a first sacrificial layer and the second polishing process forms a phase change material pattern using a second sacrificial layer. After removing the first and second sacrificial layers to expose resultant protruding structures of the first contact portion and the phase change material pattern, a third polishing process is used to polish the resultant protruding structures using an insulation layer as a polishing stopper layer.