摘要:
A microporous polyethylene membrane made of a polyethylene resin having a ratio (mass-average molecular weight/number-average molecular weight) of 5 to 300 and comprising 1% or more by mass of ultra-high-molecular-weight polyethylene having a mass-average molecular weight of 7×105 or more, the microporous polyethylene membrane comprising (a) a coarse-structure layer having an average pore diameter of more than 0.04 μm, which is formed on at least one surface, and (b) a dense-structure layer having an average pore diameter of 0.04 μm or less, an area ratio of the coarse-structure layer to the dense-structure layer in a membrane cross section being 0.1 to 0.8.
摘要:
The present invention relates to a particular multi-layer microporous membrane having a good balance of important properties, including excellent electrochemical stability and low heat shrinkage, while maintaining high permeability and heat resistance, with good mechanical strength, compression resistance and electrolytic solution absorption. Of particular importance when used as a battery separator, the present multi-layer microporous membrane exhibits excellent heat shrinkage, melt down temperature and thermal mechanical properties, i.e. low maximum shrinkage in the molten state. The multi-layer microporous membrane of the present invention can be produced (or manufactured) by layering, such as for example by coextrusion, one or more microporous membrane second layers and one or more microporous membrane first layers, such as on one or both sides of a second layer. The invention further relates to battery separators comprising the multi-layer microporous membrane and batteries utilizing the battery separators.
摘要:
A microporous polyolefin membrane having a structure in which its pore size distribution curve obtained by mercury intrusion porosimetry has at least two peaks, which is produced by extruding a melt-blend of a polyolefin composition comprising (a) high density polyethylene resin having a weight average molecular weight of from about 2.5×105 to about 5×105 and a molecular weight distribution of from about 5 to about 100, (b) polypropylene resin having a weight average molecular weight of from about 3×105 to about 1.5×106 and a molecular weight distribution of from about 1 to about 100, and (c) ultra-high molecular weight polyethylene resin having a weight average molecular weight of about 5×105 or higher, and a membrane-forming solvent, cooling the extrudate to form a high resin content gel-like sheet, stretching the gel-like sheet at a high stretching temperature to form a stretched gel-like sheet, removing the membrane-forming solvent from the stretched gel-like sheet to form a membrane, stretching the membrane to a high magnification to form a stretched membrane, and heat-setting the stretched microporous membrane to form the microporous membrane.
摘要:
A multi-layer, microporous polyolefin membrane comprising first microporous layers constituting at least both surface layers, and at least one second microporous layer disposed between both surface layers, the first microporous layer comprising a first polyethylene resin containing 8% or more by mass of ultra-high-molecular-weight polyethylene having a weight-average molecular weight of 1×106 or more, the second microporous layer comprising a second polyethylene resin containing 7% or less by mass of the ultra-high-molecular-weight polyethylene, and having a structure in which a pore diameter distribution curve obtained by mercury intrusion porosimetry has at least two peaks, and the total thickness of the first microporous layers being 15-60% per 100% of the total thickness of the first and second microporous layers.
摘要:
A thermoplastic film including a microporous polymeric membrane; and a non-woven web bonded to the polymeric microporous membrane, wherein the web comprises a plurality of fibers comprising polyolefin having a Tm≧85.0° C. and a Te-Tm≦10.0° C.
摘要:
The invention relates to a microporous membrane having an improved balance of important properties such as melt down temperature and thickness fluctuations. The invention also relates to a system and method for producing such a membrane, the use of such a membrane as a battery separator film, batteries containing such a membrane, and the use of such batteries as a power source in, e.g., electric and hybrid electric vehicles.
摘要:
The present invention provides a microporous polyolefin membrane of high permeability and novel structure, and also provides a method of producing the same, wherein its average pore size is gradually decreases from at least one membrane surface towards its center. The method of producing the microporous polyolefin membrane comprises the steps of extruding the solution, composed of 10 to 50 weight % of (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing this polyolefin and 50 to 90 weight % of a solvent, into a gel-like formed article and removing the solvent therefrom, wherein a treatment step with a hot solvent is incorporated.
摘要:
A multi-layer, microporous polyolefin membrane having at least three layers, which comprises first microporous layers made of a polyethylene resin for constituting at least both surface layers, and at least one second microporous layer comprising a polyethylene resin and polypropylene and disposed between both surface layers, the heat of fusion (ΔHm) of the polypropylene measured by differential scanning calorimetry being 90 J/g or more, and the polypropylene content in the second microporous layer being 50% or less by mass based on 100% by mass of the total of the polyethylene resin and the polypropylene.
摘要:
A microporous polyethylene membrane having well-balanced permeability, mechanical properties, heat shrinkage resistance, compression resistance, electrolytic solution absorbability, shutdown properties and meltdown properties, with an average pore diameter changing in a thickness direction is produced by melt-blending a polyethylene resin and a membrane-forming solvent to prepare a solution A having a resin concentration of 25 to 50% by mass and a solution B having a resin concentration of 10 to 30% by mass, the resin concentration in the solution A being higher than that in the solution B, (a) simultaneously extruding the resin solutions A and B through a die, cooling the resultant extrudate to provide a gel-like sheet in which the resin solutions A and B are laminated, and removing the membrane-forming solvent from the gel-like sheet, or (b) extruding the resin solutions A and B through separate dies, removing the membrane-forming solvent from the resultant gel-like sheets A and B to form microporous polyethylene membranes A and B, and alternately laminating the microporous polyethylene membranes A and B, while easily controlling the average pore diameter distribution in the microporous polyethylene membrane in a thickness direction.