Abstract:
An improved protective cover includes a first protective board and a second protective board coupled to each other, and foldable and unfoldable with respect to each other, and the first protective board being provided for carrying and positioning a telecom product, characterized in that the first protective board includes at least one transverse folding portion formed on a peripheral surface of the first protective board for separating the first protective board into an upper support portion and a lower support portion; and the second protective board includes at least one transverse positioning slot formed on a peripheral surface of the second protective board. Therefore, when the second protective board is folded and buckled to the first protective board, the telecom product placed on the first protective board is protected. When the second protective board is unfolded, and the lower support portion of the first protective board is not fixed to the telecom product, the first protective board can be bent by the folding portion while being lifted, such that a lower end of the telecom product is moved outward and fixed to any one of the positioning slots of the second protective board, and the lower support portion of the bent second protective board constitute a support to the telecom product, and thus the telecom product can be disposed at a specific angle for its operation and viewing.
Abstract:
A shaped optical prism structure for mounting on an upward light-outgoing surface of a street light or wall lamp to change the direction of light through about 360 o by means of a recessed flat incident surface, a recessed primary full-reflection surface and a curved light-distribution surface formed of a series of sloping surfaces and to enable the light to be projected onto the floor.
Abstract:
Methods of forming features and structures thereof are disclosed. In one embodiment, a method of forming a feature includes forming a first material over a workpiece, forming a first pattern for a lower portion of the feature in the first material, and filling the first pattern with a sacrificial material. A second material is formed over the first material and the sacrificial material, and a second pattern for an upper portion of the feature is formed in the second material. The sacrificial material is removed. The first pattern and the second pattern are filled with a third material.
Abstract:
A dual pulsed light generation apparatus including a polarization beam splitter (PBS), a first polarization reflector, and a second polarization reflector is provided. The PBS has a first plane, a second plane, and a dividing interface located between the first plane and the second plane. The PBS is located in the transmission path of an incident pulsed light and used for dividing the incident pulsed light into a first polarization pulsed light reflected by the dividing interface and a second polarization pulsed light passing through the dividing interface. The first polarization reflector is disposed opposite to the first plane and transforms the first polarization pulsed light into a third polarization pulsed light passing through the dividing interface. The first polarization reflector is disposed opposite to the second plane.
Abstract:
An epitaxial semiconductor layer may be formed in a first area reserved for p-type field effect transistors. An ion implantation mask layer is formed and patterned to provide an opening in the first area, while blocking at least a second area reserved for n-type field effect transistors. Fluorine is implanted into the opening to form an epitaxial fluorine-doped semiconductor layer and an underlying fluorine-doped semiconductor layer in the first area. A composite gate stack including a high-k gate dielectric layer and an adjustment oxide layer is formed in the first and second area. P-type and n-type field effect transistors (FET's) are formed in the first and second areas, respectively. The epitaxial fluorine-doped semiconductor layer and the underlying fluorine-doped semiconductor layer compensate for the reduction of the decrease in the threshold voltage in the p-FET by the adjustment oxide portion directly above.
Abstract:
In a method of making a semiconductor device, a first gate stack is formed on a substrate at a pFET region, which includes a first gate electrode material. The source/drain regions of the substrate are etched at the pFET region and the first gate electrode material of the first gate stack is etched at the pFET region. The etching is at least partially selective against etching oxide and/or nitride materials so that the nFET region is shielded by a nitride layer (and/or a first oxide layer) and so that the spacer structure of the pFET region at least partially remains. Source/drain recesses are formed and at least part of the first gate electrode material is removed by the etching to form a gate electrode recess at the pFET region. A SiGe material is epitaxially grown in the source/drain recesses and in the gate electrode recess at the pFET region. The SMT effect is achieved from the same nitride nFETs mask.
Abstract:
The instant invention provides soluble fusion protein complexes and IL-15 variants that have therapeutic and diagnostic use, and methods for making the such proteins. The instant invention additionally provides methods of stimulating or suppressing immune responses in a mammal using the fusion protein complexes and IL-15 variants of the invention.
Abstract:
In a method of making a semiconductor device, a first gate stack is formed on a substrate at a pFET region, which includes a first gate electrode material. The source/drain regions of the substrate are etched at the pFET region and the first gate electrode material of the first gate stack is etched at the pFET region. The etching is at least partially selective against etching oxide and/or nitride materials so that the nFET region is shielded by a nitride layer (and/or a first oxide layer) and so that the spacer structure of the pFET region at least partially remains. Source/drain recesses are formed and at least part of the first gate electrode material is removed by the etching to form a gate electrode recess at the pFET region. A SiGe material is epitaxially grown in the source/drain recesses and in the gate electrode recess at the pFET region. The SMT effect is achieved from the same nitride nFETs mask.
Abstract:
A method for demulsifying water-oil emulsions through ultrasonic action, comprises a step of making the water-oil emulsions flow through at least one ultrasonic acting region in a flow direction, wherein: within the ultrasonic acting region, a concurrent ultrasonic wave whose traveling direction is the same as the flow direction of the water-oil emulsions is generated by at least a one first ultrasonic transducer provided at the upstream end of the ultrasonic acting region, and at same time, a countercurrent ultrasonic wave whose traveling direction is opposite to the flow direction of the water-oil emulsions is generated by at least a one second ultrasonic transducer provided at the downstream end of the ultrasonic acting region; and the concurrent ultrasonic wave and the countercurrent ultrasonic wave act simultaneously on the water-oil emulsions which flow through the ultrasonic acting region, so as to demulsify the water-oil emulsions. After being demulsified, the water-oil emulsions gravity settle and separate, or settle and separate under an electric field, so as to be dewatered. The present invention can apply to various water-oil separating technologies in the procedures from mining to processing of crude oil.
Abstract:
Semiconductor devices and methods of manufacturing thereof are disclosed. A preferred embodiment includes a semiconductor device comprising a workpiece, the workpiece including a first region and a second region proximate the first region. A first material is disposed in the first region, and at least one region of a second material is disposed within the first material in the first region, the second material comprising a different material than the first material. The at least one region of the second material increases a first stress of the first region.