Abstract:
An image sensor module is presented which includes a semiconductor chip, a holder and a coupling member. The semiconductor chip has a semiconductor chip body; an image sensing section over the semiconductor chip body; and bonding pads on the semiconductor chip body. The holder is mounted over the semiconductor chip and has an insulation section over the semiconductor chip body; connection patterns on the insulation section which are electrically coupled to the bonding pads; and a transparent cover over the image sensing section which is connected to the insulation section. The coupling member is interposed between the holder and the semiconductor chip for coupling together the holder to the semiconductor chip.
Abstract:
The present invention relates to a search service system and a method thereof, and more particularly, relates to a search service system capable of providing an input order of a keyword which is input into the search service system, according to a category to which the keyword belongs, and a method thereof.
Abstract:
A thermoelectric nanowire and a method of manufacturing the same, in which an oxide layer and a thermoelectric material layer, both of which have different thermal expansion coefficients, are stacked on a substrate, and a single crystal thermoelectric nanowire is grown from a thermoelectric material using the compressive stress caused by the difference between the thermal expansion coefficients. The method includes preparing a substrate on which an oxide layer is formed, forming a plurality of nanoparticles, each of which includes aluminum (Al), silver (Ag), iron (Fe) or oxides thereof, on the oxide layer, forming a thermoelectric material thin film, which has thermoelectric properties, above the oxide layer so as to include the nanoparticles formed on the oxide layer, heat-treating the substrate having the thermoelectric material thin film to grow the thermoelectric nanowire containing the nanoparticles, and cooling the substrate at room temperature after the heat-treatment.
Abstract:
The present invention provides an antibody specifically binding to death receptor 5 (DR5), which is selected from the group consisting of: an antibody comprising a heavy chain variable region (VH) having the amino acid sequences of SEQ ID NOs: 1 to 3 at complementary determining regions (CDRs) and a light chain variable region (VL) having the amino acid sequences of SEQ ID NOs: 4 to 6 at CDRs; and an antibody comprising a (VH) having the amino acid sequences of SEQ ID NOs: 7 to 9 at CDRs and a (VL) having the amino acid sequences of SEQ ID NOs: 10 to 12 at CDRs, and a composition for preventing or treating a cancer comprising the same. The antibody of the present invention can be effectively used for the prevention or treatment of various cancers, through inducing autophagic cell death of TRAIL-sensitive cancer cells as well as TRAIL-resistant cancer cells by specific binding to DR5.
Abstract translation:本发明提供了特异性结合死亡受体5(DR5)的抗体,其选自:包含具有SEQ ID NO:1至3的氨基酸序列的重链可变区(VH)的抗体, 互补决定区(CDR)和在CDR中具有SEQ ID NO:4至6的氨基酸序列的轻链可变区(VL); 以及抗体,其包含CDR上具有SEQ ID NO:7至9的氨基酸序列的氨基酸序列的抗体和在CDR中具有SEQ ID NO:10至12的氨基酸序列的(VL),以及用于预防或 治疗包含该癌症的癌症。 通过特异性结合DR5,本发明的抗体可以通过诱导TRAIL敏感性癌细胞的自噬细胞死亡以及抗TRAIL抗性癌细胞,有效地用于预防或治疗各种癌症。
Abstract:
A solar module patterning apparatus comprises a laser oscillator, a homogenizer and a scanner. The laser oscillator generates a laser beam having a predetermined wavelength. The homogenizer homogenizes an intensity distribution of the generated laser beam provided from the laser oscillator. The scanner scans the laser beam to a solar module. The laser beam is output from the homogenizer and passed through a mask with a predetermined pattern.
Abstract:
A liquid crystal display panel includes an upper substrate, a lower substrate facing the upper substrate, a gate line and a data line on an upper surface of the lower substrate facing the upper substrate, the gate line and the data line cross each other to define a cell area, a pixel electrode formed in the cell area, a dummy source/drain electrode pattern over the gate line, and a ball spacer within the dummy source/drain electrode pattern, the ball spacer maintaining a cell gap between the upper substrate and the lower substrate.
Abstract:
An electron emission device includes first and second substrates facing each other while a vacuum space is interposed therebetween. An electron emission array is formed on the first substrate to emit electrons toward the second substrate, and phosphor layers are formed on the second substrate. An anode electrode is formed on a surface of the phosphor layers, and receives the voltage required for accelerating electron beams from the electron emission array. A grid electrode is disposed between the first and second substrates and is closer to the second substrate than to the first substrate. The grid electrode has electron beam passage holes, and receives a voltage lower than a location reference voltage.
Abstract:
The present invention discloses a CALM capable of the client's determining the CALM storing a service rapidly and accurately, and searching the service by accessing the corresponding CALM, and service agent's preparing the base environment in which a service agent for providing the service the Web can inform a client of the service agent's service by enabling the client to access a CALM-based directory facilitator through a Web server, and an agent service using the CALM.
Abstract:
A semiconductor package includes a semiconductor chip provided with a first surface having a bonding pad, a second surface opposing to the first surface and side surfaces; a first redistribution pattern connected with the bonding pad and extending along the first surface from the bonding pad to an end portion of the side surface which meets with the second surface; and a second redistribution pattern disposed over the first redistribution pattern and extending from the side surfaces to the first surface. In an embodiment of the present invention, in which the first redistribution pattern connected with the bonding pad is formed over the semiconductor chip and the second redistribution pattern is formed over the first redistribution pattern, it is capable of reducing a length for signal transfer since the second redistribution pattern is used as an external connection terminal. It is also capable of processing data with high speed, as well as protecting the semiconductor chip having weak brittleness, since the semiconductor package is connected to the substrate without a separate solder ball.
Abstract:
Provided are an LCD device and a method for manufacturing the same. The LCD device includes a first substrate, a second substrate, a spacer interposed between the first substrate and the second substrate, and a barrier. The barrier is disposed at least one of the first substrate and the second substrate to control the movement of the spacer. In the method, the first substrate is formed. The second substrate is formed. The barrier is formed on at least one of the first substrate and the second substrate. The spacer is disposed within the barrier. Since the LCD device controls the movement of the spacer, a high aperture ratio is realized.