Abstract:
Provided are novel electrochemical cells that include positive electrodes, negative electrodes containing high capacity active materials such as silicon, and auxiliary electrodes containing lithium. An auxiliary electrode is provided in the cell at least prior to its formation cycling and is used to supply lithium to the negative electrode. The auxiliary electrode may be then removed from the cell prior or after formation. The transfer of lithium to the negative electrode may be performed using a different electrolyte, a higher temperature, and/or a slower rate than during later operational cycling of the cell. After this transfer, the negative electrode may remain pre-lithiated during later cycling at least at a certain predetermined level. This pre-lithiation helps to cycle the cell at more optimal conditions and to some degree maintain this cycling performance over the operating life of the cell. Also provided are methods of fabricating such cells.
Abstract:
A method includes scanning a test socket after removal of a device under test to generate scan data. The scan data is compared to reference data. A presence of at least a portion of a pin in the test socket is identified based on the comparison. A test system includes a test socket, a scanner, and a control unit. The test socket is operable to receive devices under test. The scanner is operable to scan a test socket after removal of a device under test to generate scan data. The control unit is operable to compare the scan data to reference data and identify a presence of at least a portion of a pin in the test socket based on the comparison.
Abstract:
Provided are novel negative electrodes for use in lithium ion cells. The negative electrodes include one or more high capacity active materials, such as silicon, tin, and germanium, and a lithium containing material prior to the first cycle of the cell. In other words, the cells are fabricated with some, but not all, lithium present on the negative electrode. This additional lithium may be used to mitigate lithium losses, for example, due to Solid Electrolyte Interphase (SEI) layer formation, to maintain the negative electrode in a partially charged state at the end of the cell discharge cycle, and other reasons. In certain embodiments, a negative electrode includes between about 5% and 25% of lithium based on a theoretical capacity of the negative active material. In the same or other embodiments, a total amount of lithium available in the cell exceeds the theoretical capacity of the negative electrode active material.
Abstract:
Provided are novel electrodes for use in lithium ion batteries. An electrode includes one or more intermediate layers positioned between a substrate and an electrochemically active material. Intermediate layers may be made from chromium, titanium, tantalum, tungsten, nickel, molybdenum, lithium, as well as other materials and their combinations. An intermediate layer may protect the substrate, help to redistribute catalyst during deposition of the electrochemically active material, improve adhesion between the active material and substrate, and other purposes. In certain embodiments, an active material includes one or more high capacity active materials, such as silicon, tin, and germanium. These materials tend to swell during cycling and may loose mechanical and/or electrical connection to the substrate. A flexible intermediate layer may compensate for swelling and provide a robust adhesion interface. Provided also are novel methods of fabricating electrodes containing one or more intermediate layers.
Abstract:
A connector. The connector includes a USB socket and a USB plug. The USB plug is detachably connected with the USB socket. When the USB plug is connected to the USB socket, a closed space is formed by the USB plug and the USB socket, which prevents static discharge being occurred.
Abstract:
A shareable application program interface infrastructure which is used in combination with a relational database to provide data storage and processing functions for location-dependent objects, and includes a mechanism for easily associating an object, such a service, with a geographic region, such as an area served by the service. The service designer is provided with a tool to choose a geographic region or a point location (specified by an address), and to associate that selected geographic region with a service. Each service is associated with a geographic region chosen from a hierarchy of predetermined system-defined regions that are preferably organized into a hierarchy composed of levels organized in order of decreasing size so that the boundaries of each child region lie within the boundaries of its parent region. The services designer is also provided with the option of creating “user defined regions” that are composed of existing system defined regions or a region centered around a selected location. The user-defined region could represent business objects that relate to a particular entity; for example, a set of sales regions served by different regional sales offices.
Abstract:
Provided herein are novel template electrode materials and structures for lithium ion cells. Related methods are also provided. According to various embodiments, an electrode can include a nanostructured template, an electrochemically active material layer coating the template, and a first intermediate layer between the nanostructured template and the electrochemically active material layer. In one arrangement, the nanostructured template includes silicide nanowires. The electrochemically active material may be any of silicon, tin, germanium, carbon, metal hydrides, silicides, phosphides, and nitrides. The first intermediate layer may facilitate adhesion between the nanostructured template and the electrochemically active material layer, electronic conductivity within the electrode, and/or stress relaxation between the nanostructured template and the electrochemically active material layer.
Abstract:
Provided are novel methods of fabricating electrochemical cells containing high capacity active materials that form multilayered solid electrolyte interphase (SEI) structures on the active material surface during cell fabrication. Combining multiple different SEI layers on one surface can substantially improve cell performance by providing each layer with different properties. For example, an outer layer having a high electronic resistance may be combined with an inner layer having a high ionic permeability. To form such multilayered SEI structures, formation may involve changing electrolyte composition, functionalizing surfaces, and/or varying formation conditions. For example, formation may start with a boron containing electrolyte. This initial electrolyte is then replaced with an electrolyte that does not contain boron and instead may contain fluorine additives. In certain embodiments, cell's temperature is changed during formation to initiate different chemical reactions during SEI formation. Variations in multilayered SEI structures may be also achieved by varying current rates.
Abstract:
Provided are novel negative electrodes for use in lithium ion cells. The negative electrodes include one or more high capacity active materials, such as silicon, tin, and germanium, and a lithium containing material prior to the first cycle of the cell. In other words, the cells are fabricated with some, but not all, lithium present on the negative electrode. This additional lithium may be used to mitigate lithium losses, for example, due to Solid Electrolyte Interphase (SEI) layer formation, to maintain the negative electrode in a partially charged state at the end of the cell discharge cycle, and other reasons. In certain embodiments, a negative electrode includes between about 5% and 25% of lithium based on a theoretical capacity of the negative active material. In the same or other embodiments, a total amount of lithium available in the cell exceeds the theoretical capacity of the negative electrode active material.
Abstract:
A system and a process for capture and absorption of sulfur dioxide and carbon dioxide by an ammonia method at normal pressure are disclosed. The system has a dilute ammonia water supply device connected with sulfur dioxide and carbon dioxide absorption devices; an induced draft fan is connected with a heat exchanger connected with the sulfur dioxide absorption device; a sulfur dioxide absorption tower is connected with a carbon dioxide absorption tower; cooling devices in the sulfur dioxide and carbon dioxide absorption towers share a cooling water inlet and outlet pipe; the sulfur dioxide and carbon dioxide absorption devices respectively restore ammonia concentration to original ammonia water concentration by supplementing concentrated ammonia water; the sulfur dioxide and carbon dioxide absorption devices respectively pump solutions into the heat exchangers, then the solutions enter crystallization tanks; solid-liquid separation is performed through centrifuges, and the liquid continues to circulate in the system.