摘要:
Provided are novel methods of fabricating electrochemical cells containing high capacity active materials that form multilayered solid electrolyte interphase (SEI) structures on the active material surface during cell fabrication. Combining multiple different SEI layers on one surface can substantially improve cell performance by providing each layer with different properties. For example, an outer layer having a high electronic resistance may be combined with an inner layer having a high ionic permeability. To form such multilayered SEI structures, formation may involve changing electrolyte composition, functionalizing surfaces, and/or varying formation conditions. For example, formation may start with a boron containing electrolyte. This initial electrolyte is then replaced with an electrolyte that does not contain boron and instead may contain fluorine additives. In certain embodiments, cell's temperature is changed during formation to initiate different chemical reactions during SEI formation. Variations in multilayered SEI structures may be also achieved by varying current rates.
摘要:
Provided are novel electrochemical cells that include positive electrodes, negative electrodes containing high capacity active materials such as silicon, and auxiliary electrodes containing lithium. An auxiliary electrode is provided in the cell at least prior to its formation cycling and is used to supply lithium to the negative electrode. The auxiliary electrode may be then removed from the cell prior or after formation. The transfer of lithium to the negative electrode may be performed using a different electrolyte, a higher temperature, and/or a slower rate than during later operational cycling of the cell. After this transfer, the negative electrode may remain pre-lithiated during later cycling at least at a certain predetermined level. This pre-lithiation helps to cycle the cell at more optimal conditions and to some degree maintain this cycling performance over the operating life of the cell. Also provided are methods of fabricating such cells.
摘要:
Provided are methods of preparing a lithium ion cell including forming the cell by charging the lithium ion cell to at least about 5% or, more specifically, to at least about 20% of the theoretical capacity of the negative electrode electrochemically active material, holding the lithium ion cell in a charged state for at least about 0.5 hours, and discharging the lithium ion cell. Holding the lithium ion cell in a partially charged state is believed to significantly improve its Coulombic efficiency during subsequent cycling.
摘要:
Provided are novel electrodes for use in lithium ion batteries. An electrode includes one or more intermediate layers positioned between a substrate and an electrochemically active material. Intermediate layers may be made from chromium, titanium, tantalum, tungsten, nickel, molybdenum, lithium, as well as other materials and their combinations. An intermediate layer may protect the substrate, help to redistribute catalyst during deposition of the electrochemically active material, improve adhesion between the active material and substrate, and other purposes. In certain embodiments, an active material includes one or more high capacity active materials, such as silicon, tin, and germanium. These materials tend to swell during cycling and may loose mechanical and/or electrical connection to the substrate. A flexible intermediate layer may compensate for swelling and provide a robust adhesion interface. Provided also are novel methods of fabricating electrodes containing one or more intermediate layers.
摘要:
Provided are conductive substrates having open structures and fractional void volumes of at least about 25% or, more specifically, or at least about 50% for use in lithium ion batteries. Nanostructured active materials are deposited over such substrates to form battery electrodes. The fractional void volume may help to accommodate swelling of some active materials during cycling. In certain embodiments, overall outer dimensions of the electrode remain substantially the same during cycling, while internal open spaces of the conductive substrate provide space for any volumetric changes in the nanostructured active materials. In specific embodiments, a nanoscale layer of silicon is deposited over a metallic mesh to form a negative electrode. In another embodiment, a conductive substrate is a perforated sheet with multiple openings, such that a nanostructured active material is deposited into the openings but not on the external surfaces of the sheet.
摘要:
Provided are conductive substrates having open structures and fractional void volumes of at least about 25% or, more specifically, or at least about 50% for use in lithium ion batteries. Nanostructured active materials are deposited over such substrates to form battery electrodes. The fractional void volume may help to accommodate swelling of some active materials during cycling. In certain embodiments, overall outer dimensions of the electrode remain substantially the same during cycling, while internal open spaces of the conductive substrate provide space for any volumetric changes in the nanostructured active materials. In specific embodiments, a nanoscale layer of silicon is deposited over a metallic mesh to form a negative electrode. In another embodiment, a conductive substrate is a perforated sheet with multiple openings, such that a nanostructured active material is deposited into the openings but not on the external surfaces of the sheet.
摘要:
Electrochemical cells containing nanostructured negative active materials and composite positive active materials and methods of fabricating such electrochemical cells are provided. Positive active materials may have inactive components and active components. Inactive components may be activated and release additional lithium ions, which may offset some irreversible capacity losses in the electrochemical cells. In certain embodiments, the activation releases lithium ion having a columbic content of at least about 400 mAh/g based on the weight of the activated material.
摘要:
Provided are novel electrode material composite structures containing high capacity active materials formed into porous base structures. The structures also include shells that encapsulate these porous base structures. During lithiation of the active material, the shell mechanically constrains the porous base structure. The shell allows lithium ions to pass through but prevents electrolyte solvents from interacting with the encapsulated active material. In certain embodiments, the shell contains carbon, while the porous base structure contains silicon. Although silicon tends to swell during lithiation, the porosity of the base structure and/or void spaces inside the shell helps to accommodate this additional volume within the shell without breaking it or substantially increasing the overall size of the composite structure. This allows integration of the composite structures into various types of battery electrodes and cycling high capacity active materials without damaging the electrodes' internal structures and deteriorating cycling characteristics of batteries.
摘要:
Provided are novel electrode material composite structures containing high capacity active materials formed into porous base structures. The structures also include shells that encapsulate these porous base structures. During lithiation of the active material, the shell mechanically constrains the porous base structure. The shell allows lithium ions to pass through but prevents electrolyte solvents from interacting with the encapsulated active material. In certain embodiments, the shell contains carbon, while the porous base structure contains silicon. Although silicon tends to swell during lithiation, the porosity of the base structure and/or void spaces inside the shell helps to accommodate this additional volume within the shell without breaking it or substantially increasing the overall size of the composite structure. This allows integration of the composite structures into various types of battery electrodes and cycling high capacity active materials without damaging the electrodes' internal structures and deteriorating cycling characteristics of batteries.
摘要:
A lithium ion battery electrode includes silicon nanowires used for insertion of lithium ions and including a conductivity enhancement, the nanowires growth-rooted to the conductive substrate.