Abstract:
The present invention provides a cell or stack for evaluating the performance of a fuel cell and a method of evaluating the performance of the fuel cell using the cell or stack, in which a semiconductor thermoelectric device, attached to the side surface of the unit cell or stack of the fuel cell, is provided so as to evaluate the performance of the fuel cell in an environment in which temperature is maintained at a uniform temperature.According to the present invention, the temperatures of an anode and a cathode of the fuel cell can be precisely changed or maintained. Further, the performance of the fuel cell can also be measured in sub-zero temperature conditions without requiring a separate environmental chamber. A rate of temperature decrease, at which the temperature decreases to a certain sub-zero temperature, or a rate of temperature increase can be precisely controlled. Therefore, the evaluation of the performance of the fuel cell can be easily and precisely achieved in an environmental temperature in which the operation of the fuel cell is required.
Abstract:
A microfluidic device and a method for measurement of biomaterials using the same. The microfluidic device includes a microfluidic structure including: a sample chamber which receives and accommodates blood; a reagent chamber which contains a luminescent reactant; a first detection chamber which contains a first material that is positively charged; a second detection chamber which is connected to the first detection chamber, and contains a second material having a boronate moiety; and at least one channel which connects the sample chamber, the reagent chamber and the first and second detection chambers.
Abstract:
Disclosed are a micro-fluidic structure for detecting biomolecules and a micro-fluidic device having the same. More particularly, a target material including at least two cis-diols is detected by a first material containing a boronate moiety and a second material containing another boronate moiety while generating electrical signals.
Abstract:
A light emitting diode (LED) module includes a plurality of LEDs which emit light, and a metal substrate on which the LEDs are mounted and which includes a fixing part to be directly fixed to an outer frame, wherein the metal substrate is a heat sink that absorbs heat generated by the LEDs.
Abstract:
An illumination unit includes multiple light source units to emit light having different wavelengths, and a synthesizing prism to synthesize the emitted light. The synthesizing prism includes a first triangular prism (tp) having a first outer surface (os) to transmit (reflect) the light according to the light's input a direction, and first and second boundary surfaces (bs), a second tp having a second os to transmit the light, a third bs facing the second bs, and a fourth bs, a third tp having a third os to transmit (reflect) the light according the light's input direction, a fifth bs facing the fourth bs, and a sixth bs facing the first bs, and a color separation portion arranged at least one of positions between the second and third bs, the fourth and fifth bs, and the sixth and first bs, to selectively transmit (reflect) the light according to wavelengths thereof.
Abstract:
An illuminating unit having a plurality of light emitting devices and collimators and a projection type image display apparatus using the same are provided. The illuminating unit includes: a plurality of light emitting devices which output light beams of predetermined wavelengths; a plurality of collimators, each having a parabolic reflection surface for reflecting the light beam in a predetermined direction, a mounting section for locating the light emitting device at the focal point of the parabolic reflection surface, a light output surface opposite to the parabolic reflection surface, and a light guide section for guiding the light beam reflected from the parabolic reflection surface to the light output surface; and one or more fixing members having two or more steps for mounting the light emitting devices and the collimators on their top surface. A plurality of light emitting devices and collimators are efficiently arranged in a small space. Therefore, thermal concentration can be reduced and heat can be effectively discharged.
Abstract:
An illuminator includes a concave mirror to reflect incident light in a predetermined direction, an inner reflective mirror provided on an optical axis of the concave mirror and having a reflective surface at least one surface thereof, a light source installed on at least one surface of the inner reflective mirror to generate and illuminate light, and a retro-reflective mirror provided at a focal point of the light reflected from the concave mirror, or in a vicinity of the focal point, and having an aperture through which some of the light illuminated from the light source and reflected by the concave mirror passes and a retro-reflective surface to reflect remaining light not passing through the aperture back toward the concave mirror.
Abstract:
A projection display includes first through third light source units to radiate first through third light beams, respectively, having different colors, an X-cube prism to combine paths of the first through third light beams, an optical modulator to sequentially modulate the first through third light beams according to image information, and a projection lens unit to magnify and project the modulated light beams onto a screen. Each of the first through third light source units includes at least one optical module. The optical module includes a collimator having a first reflective surface in a parabolic shape, and a compact light source located in the vicinity of a focal point of the first reflective surface.
Abstract:
An illumination unit and an image projection apparatus employing the same. The illumination unit includes: a first reflective surface reflecting light incident thereon; a light-emitting device generating and emitting illuminating light; and a second reflective surface reflecting light emitted from the light-emitting device to a light source surface that includes the light-emitting device.
Abstract:
An illumination unit includes first, second, third, and fourth light source units to emit first, second, third, and fourth light beams of different wavelength bands, and a hexahedral color synthesis prism to synthesize the first, second, third, and fourth light beams emitted from the first, second, third, and fourth light source units to propagate the first, second, third, and fourth light beams can propagate along the same path with respect to each other. The color synthesis prism includes first, second, third, and fourth entrance surfaces, an exit surface through which the first, second, third, and fourth beams are propagated along the same path, a first dichroic mirror to reflect the first beam incident through the first entrance surface toward the exit surface and to transmit the second, third, and fourth beams, a second dichroic mirror to reflect the second beam incident through the second entrance surface toward the exit surface and to transmit the first, third, and fourth beams, and a third dichroic mirror to reflect the fourth beam incident through the fourth entrance surface toward the exit surface and to transmit the first, second, and third beams. A projection type image display apparatus includes the illumination unit, an image-forming device to create an image corresponding to an input image signal from first, second, third, and fourth light beams propagated from the illumination unit, and a projection lens unit to enlarge and project the image created by the image-forming device onto a screen.