Abstract:
The disclosed embodiments related to a component for use in a portable electronic device. The component includes a wall of the portable electronic device, containing an intake zone that includes a set of intake vents. The wall also includes an exhaust zone containing a set of exhaust vents.
Abstract:
An interconnect device can be aligned in a first plane and can include a printed circuit board having a tongue portion and a pin portion. The pin portion can include a plurality of pins extending away from the printed circuit board. The interconnect device can be configured to electrically couple with a main logic board aligned in a second plane. In particular, the plurality of pins can be inserted into corresponding electrical contact locations within the main logic board to form a biplanar connection. The biplanar connection can be made in way that minimizes signal loss for high speed data transfers.
Abstract:
Embodiments related to an electronic device having an adaptive input row. The adaptive input row may be positioned within an opening of a device and include a cover for receiving a touch and a display that is configured to present an adaptable set of indicia. The adaptive input row may also include one or more sensors for detecting the location of a touch and/or the magnitude of a force of the touch. The adaptive input row may be positioned adjacent or proximate to a keyboard of the electronic device.
Abstract:
An electronic device such as a portable computer may be provided with a lower housing and an upper housing. The electronic device may include hinge structures which allow the upper housing to rotate about a rotational axis relative to the lower housing. The electronic device may include a ventilation port structure with intake openings that allow air to be drawn into the electronic device. The ventilation structure may also include exhaust openings that are used to expel air from the lower housing. When the electronic device is in an open position, it may be desirable for the ventilation structure to form more exhaust openings than when the electronic device is in a closed position. The ventilation structure may form lower exhaust openings when the electronic device is in the closed position and form upper and lower exhaust openings when the electronic device is in the open position.
Abstract:
An electronic device may have a housing. Electrical components such as a display and other circuitry may be mounted in the housing. The housing may have portions that move with respect to each other such as a lid that rotates relative to a base. A flexible printed circuit may have metal lines that couple components in one portion of the housing to components in another portion of the housing. As the housing portions move with respect to each other, the flexible printed circuit bends. Reliability may be enhanced for the flexible printed circuit by providing the metal layer that forms the metal lines with upper and lower coating layers. The coating layers may be formed from metal with a higher Young's modulus than a metal core in the metal layer. A slot may be formed along the length of the flexible printed circuit to help increase the minimum bend radius exhibited by the flexible printed circuit. Upper and lower metal shield layers may be provided above and below the metal traces.
Abstract:
Embodiments of keyboards having variations of electrically connecting keys to an internal component of an electronic device are described. Some embodiments include positioning several rows of conductive layers below several rows of keys. The conductive layers may be configured to receive a signal indicating a key has been depressed. Also, the internal component may be configured to scan the conductive layers to determine whether a key or keys have been depressed. In some embodiments, the conductive layers lie outside a portion of the electronic device in which internal components are traditionally located. In some embodiments, a substrate may be integrally connected with the keyboard. The substrate may receive some internal components of the electronic device.
Abstract:
An electronic device is provided with a display such as a liquid crystal display. The display includes a liquid crystal display module an array of display pixels. A backlight unit is used to provide backlight illumination to the display module. A shutter module having local dimming elements is used to locally control the amount of light that is transmitted through the display. The local dimming elements can be formed from liquid crystal display structures, polymer-dispersed liquid crystal display structures, photovoltaic material, electrowetting display structures, and/or other suitable light controlling elements. Each local dimming element controls the amount of light that is transmitted through an overlapping region of the array of display pixels. The local dimming elements may be arranged in a uniform array having rows and columns or may be shaped and sized differently and located in specific regions of the display.
Abstract:
Methods and systems for adhering internal components in a portable computing device are described. In some embodiments, an internal component adhesive removal system can include a conforming wrapper. In one embodiment, the conforming wrapper can wrap around a portion of an outer surface of the internal component. The conforming wrapper can secure and at least partially enclose the internal component such that the internal component is sufficiently constrained to protect the internal component from damage during movement of the portable computing device during normal use. In some embodiments, the wrapper comprises one or more shock absorbing features. In some embodiments, the wrapper comprises a feature configured to tear to facilitate removal of the internal component from the portable computing device.
Abstract:
The described embodiments relate generally to liquid crystal displays (LCDs), and more particularly to methods for extending a glass portion of a display to an edge of a display housing. In one embodiment, a thin cover glass layer is provided between a color filter glass layer and an upper polarizer. The thin cover glass layer is supported along an edge of the display by a filler material that can include a foam dam and a glass spacer or adhesive filler. The filler material allows the cover glass layer to be supported without damaging any drivers or circuits located on an underlying thin film transistor glass layer. In another embodiment, a glass spacer circuit with integrated drivers and circuitry on its lower surface can support the cover glass along the edge of the display.
Abstract:
The disclosed embodiments related to a component for use in a portable electronic device. The component includes a wall of the portable electronic device, containing an intake zone that includes a set of intake vents directed at a first angle toward one or more heat-generating components of the portable electronic device. The wall also includes an exhaust zone containing a set of exhaust vents directed at a second angle out of the portable electronic device.