Abstract:
An assembly for heat-generating components includes a metal and a non-metal layer. To secure to a circuit board that carries a heat-generating component, a metal standoff is secured on a perimeter of the circuit board. Multiple protruding elements of the metal layer of the assembly secure within a respective opening of the standoff. The assembly secures, through metal-to-metal contact, to the standoff by multiple mechanical couplings. The assembly not only covers the circuit board, but also extends laterally beyond the circuit board (and the circuit board components). As a result, the assembly receives thermal energy from a heat-generating component(s) on the circuit board and allows the thermal energy to flow through assembly from one portion of the assembly covering the heat-generating component(s) to the lateral portion of the assembly that does not cover the heat-generating component(s).
Abstract:
An elongated biometric device provides a slim solution for capturing biometric data, and may be placed on a portion of an electronic device having limited space, such as a side of the electronic device. The elongated biometric device may include a force sensor, which may be positioned within a housing of the electronic device and actuated through posts extending from the elongated biometric device through the housing to transfer an applied force to the force sensor.
Abstract:
A device includes a display portion that includes a display housing and a display within the display housing. The device also includes a base portion flexibly coupled to the display portion and comprising a glass member defining a keyboard region configured to receive user input, a first haptic actuator configured to produce a first haptic output at a first area of the keyboard region, and a second haptic actuator configured to produce a second haptic output at a second area of the keyboard region that is different from the first area.
Abstract:
A configurable, force-sensitive input structure for an electronic device is disclosed. The input structure has a metal contact layer, a sense layer positioned below the metal contact layer, and a drive layer capacitively coupled to the sense layer. The input structure may also have a compliant layer positioned between and coupled to the sense layer and the drive layer, a rigid base layer positioned below the drive layer, and a set of supports positioned between the metal contact layer and the rigid base layer.
Abstract:
A portable electronic device is described. This portable electronic device includes an external housing with a cavity defined by an edge. A keyboard, having a front surface and a back surface, is disposed in the cavity with the front surface facing the external housing. Moreover, a tray is disposed over the back surface of the keyboard, and is mechanically coupled to the external housing adjacent to the edge. Furthermore, battery cells are mechanically coupled to an opposite side of the tray from the back surface of the keyboard. The tray may allow the battery cells to be removed from the portable electronic device without damaging the keyboard. In addition, the tray may increase the compression strength and/or the bending strength of the portable electronic device.
Abstract:
A portable computer includes a display portion comprising a display and a base portion pivotally coupled to the display portion. The base portion may include a bottom case and a top case, formed from a dielectric material, coupled to the bottom case. The top case may include a top member defining a top surface of the base portion and a sidewall integrally formed with the top member and defining a side surface of the base portion. The portable computer may also include a sensing system including a first sensing system configured to determine a location of a touch input applied to the top surface of the base portion and a second sensing system configured to determine a force of the touch input.
Abstract:
A device includes a display portion that includes a display housing and a display within the display housing. The device also includes a base portion flexibly coupled to the display portion and comprising a glass member defining a keyboard region configured to receive user input, a first haptic actuator configured to produce a first haptic output at a first area of the keyboard region, and a second haptic actuator configured to produce a second haptic output at a second area of the keyboard region that is different from the first area.
Abstract:
A computer system having a loudspeaker mounted on a main logic board by a hermetic seal, is disclosed. More particularly, embodiments of the computer system include an acoustic cavity defined between the loudspeaker, the main logic board, and the hermetic seal. Embodiments of the computer system may include a compressible seal separated from the hermetic seal by the loudspeaker and/or the main logic board. The compressible seal may define an acoustic channel and the loudspeaker may emit sound in a high frequency range through the acoustic channel toward a system exit. Other embodiments are also described and claimed.
Abstract:
A dynamic input surface for an electronic device and a method of reconfiguring the same is disclosed. The input surface has a partially-flexible metal contact portion defining an input area, and a group of indicators. The indicators may be group of holes extending through the contact portion. The group of holes may be selectively illuminated based on a gesture performed on the contact portion. A size of the input area may be dynamically varied based on the gesture. Additionally, the group of indicators indicates a boundary of the input area.
Abstract:
A laptop computer may include a lid portion including a housing structure, a glass cover positioned coupled to the housing structure and defining a concave region, and a display positioned below the concave region of the glass cover. The laptop computer may also include a base portion positionable in a closed configuration and an open configuration with respect to the lid portion and defining a convex region along a top side of the base portion, the convex region configured to extend into the concave region of the glass cover when the lid portion and the base portion is in the closed configuration, the base portion including a keyboard positioned at the convex region.