Abstract:
A method for dynamically selecting an A-MPR value to apply for an uplink transmission is provided. The method can include a wireless communication device receiving an indication from a network that A-MPR should be applied for uplink transmissions within a frequency band used for communication between the wireless communication device and the network. The method can further include the wireless communication device receiving an RB allocation for a subset of RB's within the frequency band from the network. The method can additionally include the wireless communication device determining an allocation ratio and a distribution characteristic of the allocated subset of RB's within the frequency band. The method can also include the wireless communication device selecting an A-MPR value to apply based at least in part on the allocation ratio and the distribution characteristic. The method can further include the wireless communication device applying the selected A-MPR.
Abstract:
This disclosure relates to techniques for securely performing connection release and network redirection in a wireless communication system. A wireless device may establish a radio resource control (RRC) connection with a first cell. The wireless device may receive a RRC connection release message from the first cell. The RRC connection release message may include an indication to redirect the wireless device to a second cell. The RRC connection with the first cell may be released. It may be determined whether security has been established with the first cell when the indication to redirect the wireless device to the second cell is received. A new serving cell may be selected based at least in part on whether security has been established with the first cell when the indication to redirect the wireless device to the second cell is received.
Abstract:
This disclosure relates to performing cell measurements in unlicensed frequency bands and/or in channels with interference. According to some embodiments, a wireless user equipment (UE) device may define a reference symbol vector for a cell. Each respective element of the reference symbol vector may correspond to a respective subcarrier of the cell that carries a respective reference symbol. The UE may perform channel estimation at each respective element of the reference symbol vector. The UE may estimate the cell strength of the cell by cross-correlating channel estimates of different elements of the reference symbol vector.
Abstract:
Performing a circuit-switched fallback (CSFB) call with improved reliability. A request to establish a CSFB call may be received by a UE that is currently in a pool overlap area. The network resource controller, or the base station, transmits information to the UE which indicates the pools in which neighboring cells are operating. The UE uses this information to select a circuit-switched cell on which to operate for the CSFB operation, wherein the selected CS cell is in the same pool area as the current pool area. This prevents the UE from inadvertently camping on a CS cell in a different pool area, which could cause call failure on some networks. The information provided by the base station may comprise a pool area id, or may comprise mapping relation information that is useable by the UE to determine the current pool area.
Abstract:
This disclosure relates to Wi-Fi signaling in conjunction with cellular communication in unlicensed frequency bands for efficient co-existence. According to one embodiment, a cell may be established between a cellular base station and a wireless user equipment device on a frequency channel in an unlicensed frequency band. A cellular communication may be scheduled between the base station and the user equipment device. A Wi-Fi signal may be transmitted on the frequency channel in conjunction with the scheduled cellular communication. The Wi-Fi signal may indicate a length of the scheduled cellular communication using Wi-Fi signaling. The scheduled cellular communication may be performed via the cell.
Abstract:
End-to-end delay adaptation in conjunction with connected discontinuous reception (C-DRX) mode communication during cellular voice calls. A Voice over LTE (VoLTE) call may be established between a first wireless user equipment (UE) device and a second UE. End-to-end delay between real-time transport protocol (RTP) layers of the first UE and the second UE for the VoLTE call may be estimated. The end-to-end delay may be compared with one or more thresholds A C-DRX cycle length for the VoLTE call may be modified based on comparing the end-to-end delay with the one or more thresholds.
Abstract:
Apparatus and methods for frequency hopping among a set of frequency channels used for secondary cells by wireless devices operating with carrier aggregation across a combination of licensed and unlicensed radio frequency (RF) bands are described. A wireless device establishes a connection with an eNodeB using a primary component carrier (PCC) of a primary cell in a licensed radio frequency band. The wireless device obtains a configuration for a secondary cell operating in the unlicensed radio frequency band from the eNodeB, the configuration including a set of RF channels and a frequency-hopping pattern for communicating via a secondary component carrier in the secondary cell. The wireless device transmits to or receives from the eNodeB, via the SCC during a first hop of the frequency-hopping pattern using a first frequency channel in the set of frequency channels, and using a second frequency channel during a second hop.
Abstract:
Wireless devices, networks and methods may operate to have a wireless device cause a base station to trigger voice call continuity handovers responsive to the quality of the cellular radio link in addition to the base station triggering such handovers based on location or mobility. Furthermore, wireless communication devices may also perform monitoring of multiple buffers operating within the wireless communication device and associated with different respective communication layers, in addition to monitoring the quality of the cellular radio link, to perform intelligent dropping/discarding and/or scheduling of packets at the wireless communications device. Any one or more of these features may improve the ability of the wireless communications device to achieve stated Voice over Long Term Evolution (VoLTE) performance benchmarks in the context of the realities of current VoLTE networks.
Abstract:
This disclosure relates to providing system information for cell access to link budget limited devices. According to some embodiments, a base station may transmit a master information block (MIB), a first system information block (SIB), and second SIBs. The first SIB and the second SIBs may be configured for different device categories, and may accordingly have different characteristics. For example, the first SIB may be configured for link budget limited devices, and may include information specific to such devices and/or may exclude information not relevant to such devices or not critical to accessing the cell. In some instances, the first SIB may also include information from the MIB, such that at least some devices may be able to decode the first SIB and gain cell access without decoding the MIB.
Abstract:
Selecting a physical channel for cellular communication based on application traffic pattern. A radio bearer may be established between a wireless device and a base station. A physical downlink channel may be selected for the radio bearer. The physical downlink channel may be selected based on an application traffic pattern of an application associated with the radio bearer. In some instances, a physical uplink channel may also be selected based on an application traffic pattern of an application associated with the radio bearer.