Abstract:
Deposition processes are disclosed herein for depositing thin films comprising a dielectric transition metal compound phase and a conductive or semiconducting transition metal compound phase on a substrate in a reaction space. Deposition processes can include a plurality of super-cycles. Each super-cycle may include a dielectric transition metal compound sub-cycle and a reducing sub-cycle. The dielectric transition metal compound sub-cycle may include contacting the substrate with a dielectric transition metal compound. The reducing sub-cycle may include alternately and sequentially contacting the substrate with a reducing agent and a nitrogen reactant. The thin film may comprise a dielectric transition metal compound phase embedded in a conductive or semiconducting transition metal compound phase.
Abstract:
The present invention relates generally to methods and apparatus for the controlled growing of material on substrates. According to embodiments of the present invention, a precursor feed is controlled in order to provide an optimal pulse profile. This may be accomplished by splitting the feed into two paths. One of the paths is restricted in a continuous manner. The other path is restricted in a periodic manner. The output of the two paths converges at a point prior to entry of the reactor. Therefore, a single precursor source is able to fed precursor in to a reactor under two different conditions, one which can be seen as mimicking ALD conditions and one which can be seen as mimicking CVD conditions. This allows for an otherwise single mode reactor to be operated in a plurality of modes including one or more ALD/CVD combination modes. Additionally, the pulse profile of each pulse can be modified. The pulse profile can be modified to create a low or very low partial pressure pulse profile at the beginning of a pulse.
Abstract:
Methods for depositing silicon oxycarbide (SiOC) thin films on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a silicon precursor that does not comprise nitrogen and a second reactant that does not include oxygen. In some embodiments the methods allow for the deposition of SiOC films having improved acid-based wet etch resistance.
Abstract:
Methods and apparatus for vapor deposition of an organic film are configured to vaporize an organic reactant at a first temperature, transport the vapor to a reaction chamber housing a substrate, and maintain the substrate at a lower temperature than the vaporization temperature. Alternating contact of the substrate with the organic reactant and a second reactant in a sequential deposition sequence can result in bottom-up filling of voids and trenches with organic film in a manner otherwise difficult to achieve. Deposition reactors conducive to depositing organic films are provided.
Abstract:
Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
Abstract:
Methods and apparatus for vapor deposition of an organic film are configured to vaporize an organic reactant at a first temperature, transport the vapor to a reaction chamber housing a substrate, and maintain the substrate at a lower temperature than the vaporization temperature. Alternating contact of the substrate with the organic reactant and a second reactant in a sequential deposition sequence can result in bottom-up filling of voids and trenches with organic film in a manner otherwise difficult to achieve.
Abstract:
Methods for depositing silicon oxycarbide (SiOC) thin films on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a silicon precursor that does not comprise nitrogen and a second reactant that does not include oxygen. In some embodiments the methods allow for the deposition of SiOC films having improved acid-based wet etch resistance.
Abstract:
Methods and apparatus for vapor deposition of an organic film are configured to vaporize an organic reactant at a first temperature, transport the vapor to a reaction chamber housing a substrate, and maintain the substrate at a lower temperature than the vaporization temperature. Alternating contact of the substrate with the organic reactant and a second reactant in a sequential deposition sequence can result in bottom-up filling of voids and trenches with organic film in a manner otherwise difficult to achieve.
Abstract:
Methods and apparatus for vapor deposition of an organic film are configured to vaporize an organic reactant at a first temperature, transport the vapor to a reaction chamber housing a substrate, and maintain the substrate at a lower temperature than the vaporization temperature. Alternating contact of the substrate with the organic reactant and a second reactant in a sequential deposition sequence can result in bottom-up filling of voids and trenches with organic film in a manner otherwise difficult to achieve. Deposition reactors conducive to depositing organic films are provided.
Abstract:
Methods and apparatus for vapor deposition of an organic film are configured to vaporize an organic reactant at a first temperature, transport the vapor to a reaction chamber housing a substrate, and maintain the substrate at a lower temperature than the vaporization temperature. Alternating contact of the substrate with the organic reactant and a second reactant in a sequential deposition sequence can result in bottom-up filling of voids and trenches with organic film in a manner otherwise difficult to achieve.