Abstract:
The present invention concerns new engineered immune cells expressing two CARs directed against two different targets, polynucleotides for preparing said immune cells, pharmaceutical compositions comprising said immune cells, and the use of said immune cells in the treatment of cancers.
Abstract:
The present invention relates to engineered immune cells expressing new mesothelin (MLSN) specific chimeric antigen receptors (anti-mesothelin CAR) and their use in the treatment of solid tumors, particularly suited for allogeneic cell immunotherapy.
Abstract:
The present invention relates to polypeptides and more particularly to Transcription Activator-Like Effector derived proteins that allow to efficiently target and/or process nucleic acids. Particularly, the present invention reports the characterization of TALE derived proteins that can efficiently target methylated DNA. The present invention more specifically relates to TALE derived proteins that allow activation of methylated promoters responsible for gene silencing.
Abstract:
The present invention relates to gene editing methods to engineer primary immune cells that are made resistant to proteasome inhibitors, such as Bortezomib, Carfilzomib, Ixazomib, Marizomib, Delanzomib or Oporozomib, for their use in cell immunotherapy in combination with proteasome inhibitor treatments.
Abstract:
The present invention relates to a non-viral method for transfecting a hematopoietic cell which can be employed in immunotherapy. This method is based on the use of nanoparticle-biomolecule conjugates with increased homologous recombination. Nucleic acid to be transfected can be a chimeric antigen receptor and/or encoding a target-specific endonuclease. The present invention relates also to a method for transfecting APCs. Furthermore, the present invention relates to pharmaceutical compositions, uses and kits.
Abstract:
The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding H2M and/or CIITA or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism. Such modified T-cell is particularly suitable for allogeneic transplantations, especially because it reduces both the risk of rejection by the host's immune system and the risk of developing graft versus host disease. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer, infections and auto-immune diseases.
Abstract:
The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are designed to express both a Chimeric Antigen Receptor (CAR) directed against at least one antigen expressed at the surface of a malignant or infected cell, and a secreted inhibitor of regulatory T-cells (Treg). Preferably, such secreted inhibitor is a peptide inhibitor of forkhead/winged helix transcription factor 3 (FoxP3), a specific factor involved into the differentiation of T-cells into regulatory T-cells. The engineered T-cells of the invention direct their immune activity towards specific malignant or infected cells, while at the same time will prevent neighbouring regulatory T-cells from modulating the immune response. The invention opens the way to standard and affordable adoptive immunotherapy strategies, especially for treating or preventing cancer, and bacterial or viral infections.
Abstract:
The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward CLL1 positive cells. The engineered immune cells endowed with such CARs are particularly suited for immunotherapy for treating cancer, in particular leukemia.
Abstract:
The present invention relates to a method to engineer immune cell for immunotherapy. In particular said immune cells are engineered with chimeric antigen receptors, which be activated by the combination of hypoxia and ligand extracellular binding as input signals. The invention also relates to new designed chimeric antigen receptors which are able to redirect immune cell specificity and reactivity toward a selected target exploiting the ligand-binding domain properties and the hypoxia condition. The present invention also relates to cells obtained by the present method, in particular T-cells, comprising said chimeric antigen receptors for use in cancer treatments.
Abstract:
A single chain homing endonuclease, comprising a first variant of I-CreI having the amino acid sequence of accession number pdb 1g9y and a second variant of I-CreI variant having the amino acid sequence of accession number pdb 1g9y in a single polypeptide.