摘要:
A high-voltage MOS device includes a first high-voltage well (HVW) region overlying a substrate, a second HVW region overlying the substrate, a third HVW region of an opposite conductivity type as that of the first and the second HVW regions overlying the substrate, wherein the HVPW region has at least a portion between the first HVNW region and the second HVNW region, an insulation region in the first HVNW region, the second HVNW region, and the HVPW region, a gate dielectric over and extending from the first HVNW region to the second HVNW region, a gate electrode on the gate dielectric, and a shielding pattern electrically insulated from the gate electrode over the insulation region. Preferably, the gate electrode and the shielding pattern have a spacing of less than about 0.4 μm. The shielding pattern is preferably connected to a voltage lower than a stress voltage applied on the gate electrode.
摘要:
A semiconductor structure with high-voltage sustaining capability. A semiconductor structure with high-voltage sustaining capability includes a first well region of a first conductivity type. A pair of second well regions of a second conductivity type opposite to the first conductivity type are respectively disposed adjacent to the first well region and an anti-punch through region of the first conductivity type is disposed in at least the lower portion of the first well region to increase the doping concentration therein. Due to the ion supplementation of the anti-punch through region, the size of a semiconductor structure can be further reduced without affecting the HV sustaining capability and undesired effects such as punch-through effects can be prevented.
摘要:
A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
摘要:
A semiconductor structure with high-voltage sustaining capability. A semiconductor structure with high-voltage sustaining capability includes a first well region of a first conductivity type. A pair of second well regions of a second conductivity type opposite to the first conductivity type are respectively disposed adjacent to the first well region and an anti-punch through region of the first conductivity type is disposed in at least the lower portion of the first well region to increase the doping concentration therein. Due to the ion supplementation of the anti-punch through region, the size of a semiconductor structure can be further reduced without affecting the HV sustaining capability and undesired effects such as punch-through effects can be prevented.
摘要:
A high-voltage MOS device includes a first high-voltage well (HVW) region overlying a substrate, a second HVW region overlying the substrate, a third HVW region of an opposite conductivity type as that of the first and the second HVW regions overlying the substrate, wherein the HVPW region has at least a portion between the first HVNW region and the second HVNW region, an insulation region in the first HVNW region, the second HVNW region, and the HVPW region, a gate dielectric over and extending from the first HVNW region to the second HVNW region, a gate electrode on the gate dielectric, and a shielding pattern electrically insulated from the gate electrode over the insulation region. Preferably, the gate electrode and the shielding pattern have a spacing of less than about 0.4 μm. The shielding pattern is preferably connected to a voltage lower than a stress voltage applied on the gate electrode.
摘要:
A semiconductor structure with high-voltage sustaining capability. A semiconductor structure with high-voltage sustaining capability includes a first well region of a first conductivity type. A pair of second well regions of a second conductivity type opposite to the first conductivity type are respectively disposed adjacent to the first well region and an anti-punch through region of the first conductivity type is disposed in at least the lower portion of the first well region to increase the doping concentration therein. Due to the ion supplementation of the anti-punch through region, the size of a semiconductor structure can be further reduced without affecting the HV sustaining capability and undesired effects such as punch-through effects can be prevented.
摘要:
A transistor of an integrated circuit is provided. A first doped well region is formed in a well layer at a first active region. At least part of the first doped well region is adjacent to a gate electrode of the transistor. A recess is formed in the first doped well region, and the recess preferably has a depth of at least about 500 angstroms. A first isolation portion is formed on an upper surface of the well layer at least partially over an isolation region. A second isolation portion is formed at least partially in the recess of the first doped well region. At least part of the second isolation portion is lower than the first isolation portion. A drain doped region is formed in the recess of the first doped well region. The second isolation portion is located between the gate electrode and the drain doped region.
摘要:
A semiconductor structure with high-voltage sustaining capability. A semiconductor structure with high-voltage sustaining capability includes a first well region of a first conductivity type. A pair of second well regions of a second conductivity type opposite to the first conductivity type are respectively disposed adjacent to the first well region and an anti-punch through region of the first conductivity type is disposed in at least the lower portion of the first well region to increase the doping concentration therein. Due to the ion supplementation of the anti-punch through region, the size of a semiconductor structure can be further reduced without affecting the HV sustaining capability and undesired effects such as punch-through effects can be prevented.
摘要:
A high voltage device with retrograde well is disclosed. The device comprises a substrate, a gate region formed on the substrate, and a retrograde well placed in the substrate next to the gate region, wherein the retrograde well reduces a dopant concentration on the surface of the substrate, thereby minimizing damages to the gate region.
摘要:
A process has been developed in which an aluminum based, interconnect structure overlies a tungsten plug structure, in a small diameter contact hole. The tungsten plug is formed via RIE removal of unwanted tungsten, from areas other then the contact hole using a halogen containing etchant, and using a RIE overetch cycle that created an unwanted crevice in the center of the tungsten plug. A post RIE anneal, in a nitrogen ambient removes moisture from surrounding dielectric layers and also forms a protective, nitrogen containing tungsten layer, filling the crevice in the tungsten plug. The filling of the crevice allows a planar overlying aluminum based, interconnect structure to be obtained.