Abstract:
A circuit structure for modifying characteristic impedance by using different reference planes is provided. The structure comprises an analog signal line, a digital signal line, a corresponding reference plane for analog signals and a corresponding reference plane for digital signals. Wherein, the line width of the analog signal line is the same as that of the digital signal line. In addition, the distance between the analog signal line and the corresponding analog signal reference plane is longer than the distance between the digital signal line and the corresponding digital signal reference plane. Accordingly, the characteristic impedance mismatch during signal transmission can be solved and the quality of signal transmission can be improved.
Abstract:
Disclosed is a planar inverted-F antenna with an extended grounding plane. The planar inverted-F antenna has a grounding metal plate having a selected side edge on which the extended grounding plane is formed and has a predetermined height. At least one antenna signal radiating plate is connected to the grounding metal plate by a short-circuit piece and is substantially parallel to and spaced from the grounding metal plate by a distance. A feeding point extends from the antenna signal radiating plate in a direction toward the grounding metal plate and corresponds to the extended grounding plane with a predetermined gap therebetween. With the arrangement of the extended grounding plane, the impedance matching of the antenna is improved and the impedance bandwidth of the antenna is increased.
Abstract:
A circuit structure for modifying characteristic impedance by using different reference planes is provided. The structure comprises an analog signal line, a digital signal line, a corresponding reference plane for analog signals and a corresponding reference plane for digital signals. Wherein, the line width of the analog signal line is the same as that of the digital signal line. In addition, the distance between the analog signal line and the corresponding analog signal reference plane is longer than the distance between the digital signal line and the corresponding digital signal reference plane. Accordingly, the characteristic impedance mismatch during signal transmission can be solved and the quality of signal transmission can be improved.
Abstract:
This invention discloses a manufacturing method and a structure for a chip heat dissipation. This heat dissipation structure includes a bottom plate of circuit structure, a die of central processing unit and a cap. The cover is often used in conducting the waste heat generated from the chip. The cover can be made of a special thermal conduction material, including a metal and a bracket structure of carbon element which have high thermal conductivity so as to improve the efficiency of heat conduction. The corresponding manufacturing method for this heat conduction material can be made with chemical vapor deposition, physical vapor deposition, electroplating or the other materials preparation method. The bracket structure of carbon element can be coated on the metal surface and also can be mixed into the metal.
Abstract:
A multi-layer circuit board includes first, second, third, fourth, fifth, sixth and seventh insulating substrates disposed sequentially one above the other; first, second, third and fourth signal wiring layers; first, second and third ground wiring layers; and a power wiring layer. Each of the first and seventh insulating substrates has a thickness ranging from 2.5 to 7.5 mil. Each of the second and sixth insulating substrates has a thickness ranging from 3 to 13 mil. Each of the third and fifth insulating substrates has a thickness ranging from 3 to 15 mil. The fourth insulating substrate has a thickness ranging from 2 to 6 mil. The first signal wiring layer has a first resistance with respect to the first ground wiring layer. The second signal wiring layer has a second resistance with respect to the first and second ground wiring layers. The third signal wiring layer has a third resistance with respect to the third ground wiring layer and the power wiring layer. The fourth signal wiring layer has a fourth resistance with respect to the third ground wiring layer. The first, second, third and fourth resistances are within the range of 49.5 to 60.5 ohms.
Abstract:
This invention discloses a manufacturing process method and a structure for a heat conduction interface material. This heat conduction interface material is often used as a buffer interface between chips and heat dissipation devices and is conducted the waste heat from the chips. The heat conduction interface material can be combined a plastic material and a bracket structure of carbon element. The corresponding manufacturing process method for this heat conduction interface material comprises a mixed process that is composed of a plastic material and a bracket structure of carbon element. The bracket structure of carbon element has high thermal conductivity, so as to improve the efficiency of heat conduction. The bracket structure of carbon element can be mixed into the metal and resins.
Abstract:
This invention discloses a manufacturing method and a structure for a chip heat dissipation. This heat dissipation structure includes a bottom plate of circuit structure, a die of central processing unit and a cap. The cover is often used in conducting the waste heat generated from the chip. The cover can be made of a special thermal conduction material, including a metal and a bracket structure of carbon element which have high thermal conductivity so as to improve the efficiency of heat conduction. The corresponding manufacturing method for this heat conduction material can be made with chemical vapor deposition, physical vapor deposition, electroplating or the other materials preparation method. The bracket structure of carbon element can be coated on the metal surface and also can be mixed into the metal.
Abstract:
A multi-layer circuit board includes first, second, third, fourth, fifth, sixth and seventh insulating substrates; first, second, third, fourth and fifth signal wiring layers; first and second ground wiring layers; and a power wiring layer. Each of the first and seventh insulating substrates has a thickness ranging from 2.5 to 6.5 mil. Each of the second, fourth and sixth insulating substrates has a thickness ranging from 3 to 9 mil. Each of the third and fifth insulating substrates has a thickness ranging from 3 to 23 mil. The first signal wiring layer has a first resistance with respect to the first ground wiring layer. The second signal wiring layer has a second resistance with respect to the first ground wiring layer and the power wiring layer. The third signal wiring layer has a third resistance with respect to the first ground wiring layer and the power wiring layer. The fourth signal wiring layer has a fourth resistance with respect to the second ground wiring layer and the power wiring layer. The fifth signal wiring layer has a fifth resistance with respect to the second ground wiring layer. The first, second, third, fourth and fifth resistances are within the range of 49.5 to 60.5 ohms.
Abstract:
A dual-band antenna is provided, which includes a signal resonance unit, a grounding unit, a connection unit, and a signal line. The grounding unit is disposed opposite to the signal resonance unit. The connection unit has a first connection element and a second connection element, wherein one end of the first connection element is connected to the signal resonance unit and the other end of the first connection element is connected to the grounding unit, while one end of the second connection element is connected to one side of the first connection element. The signal line has a signal feeding end and a circuit connection end, wherein the signal feeding end is electrically connected to the second connection element, and the circuit connection end is electrically connected to a wireless circuit device.
Abstract:
This invention discloses a manufacturing method and the structure for a dissipation heat pipe. The dissipation heat pipe includes a hollow closed pipe, a column, a type of fluid and a wick structure. The dissipation heat pipe is often used in conducting the heat from the chip. The dissipation heat pipe can be made of a special thermal conduction material, including the metal and a bracket structure of carbon element which have high thermal conductivity so as to improve the heat conduction efficiency. The corresponding manufacturing method for this thermal conduction material can be made with chemical vapor deposition, physical vapor deposition, electroplating or the other materials preparation method. The bracket structure of carbon element can coat on the metal surface and also can be mixed into the metal.