摘要:
An edge emitting semiconductor laser (1) is specified, comprising an n-side waveguide region (21) and a p-side waveguide region (22); an active zone (20) for generating electromagnetic radiation; at least one reflection layer (24) in the n-side waveguide region (21), wherein the active zone (20) is arranged between the two waveguide regions (21, 22), the thickness of the n-side waveguide region (21) is greater than that of the p-side waveguide region (22), the refractive index of the reflection layer (24) is less than the refractive index of the n-side waveguide region (21) adjoining the reflection layer (24).
摘要:
A semiconductor component includes a semiconductor body with a semiconductor layer sequence having an active region, provided for generating coherent radiation, and an indicator layer. With respect to an interface which delimits the semiconductor body in regions in a vertical direction, on that side of said interface which is remote from the active region, the semiconductor body has a web-like region extending in a vertical direction between the interface and a surface of the semiconductor body. The indicator layer has a material composition that differs from that of the material of the web-like region which adjoins the indicator layer. A distance between the indicator layer and the surface is at most of the same magnitude as a distance between the interface and the surface.
摘要:
A composite substrate (1) comprising a substrate body (2) and a utility layer (31) fixed on the substrate body (2). A planarization layer (4) is arranged between the utility layer (31) and the substrate body (2). A method for producing a composite substrate (1) applies a planarization layer (4) on a provided utility substrate (3). The utility substrate (3) is fixed on a substrate body (2) for the composite substrate (1). The utility substrate (3) is subsequently separated, wherein a utility layer (31) of the utility substrate (3) remains for the composite substrate (1) on the substrate body (2).
摘要:
An edge emitting semiconductor laser (1) is specified, comprising an n-side waveguide region (21) and a p-side waveguide region (22); an active zone (20) for generating electromagnetic radiation; at least one reflection layer (24) in the n-side waveguide region (21), wherein the active zone (20) is arranged between the two waveguide regions (21, 22), the thickness of the n-side waveguide region (21) is greater than that of the p-side waveguide region (22), the refractive index of the reflection layer (24) is less than the refractive index of the n-side waveguide region (21) adjoining the reflection layer (24).
摘要:
Disclosed are a method of fabricating a quasi-substrate wafer with a subcarrier wafer and a growth layer, and a semiconductor body fabricated using such a quasi-substrate wafer. In the method of fabricating a quasi-substrate wafer, a growth substrate water is fabricated that is provided with a separation zone and comprises the desired material of the growth layer. The growth substrate wafer is provided with a stress that counteracts a stress generated by the formation of the separation zone, and/or the stress generated by the formation of the separation zone is distributed, by structuring a first main race of the growth substrate water and/or the separation zone, to a plurality of subregions along the first main face. The growth substrate wafer with separation zone exhibits no or only slight bowing.
摘要:
A method for laterally dividing a semiconductor wafer (1) comprises the method steps of: providing a growth substrate (2); epitaxially growing a semiconductor layer sequence (3), which comprises a functional semiconductor layer (5), onto the growth substrate (2); applying a mask layer (10) to partial regions of the semiconductor layer sequence (3) in order to produce masked regions (11) and unmasked regions (12); implanting ions through the unmasked regions (12) in order to produce implantation regions (13) in the semiconductor wafer (1); and dividing the semiconductor wafer (1) along the implantation regions (13), wherein the growth substrate (2) or at least one part of the growth substrate (2) is separated from the semiconductor wafer.
摘要:
An optoelectronic semiconductor body comprises a substrate (10), which has on a first main area (12) an epitaxial semiconductor layer sequence (20), suitable for generating electromagnetic radiation, in a first region (14) and a first trench (24) in a second region (22) adjacent to the first region (14), and at least one second trench (30) arranged outside the first region (14). The invention also relates to an optoelectronic semiconductor body and a method for producing an optoelectronic semiconductor body.
摘要:
A semiconductor component includes a semiconductor body with a semiconductor layer sequence having an active region, provided for generating coherent radiation, and an indicator layer. With respect to an interface which delimits the semiconductor body in regions in a vertical direction, on that side of said interface which is remote from the active region, the semiconductor body has a web-like region extending in a vertical direction between the interface and a surface of the semiconductor body. The indicator layer has a material composition that differs from that of the material of the web-like region which adjoins the indicator layer. A distance between the indicator layer and the surface is at most of the same magnitude as a distance between the interface and the surface.
摘要:
A semiconductor chip with a semiconductor body has a semiconductor layer sequence with an active region provided for generating radiation. A mirror structure that includes a mirror layer and a dielectric layer that is arranged at least in regions between the mirror layer and semiconductor body is arranged on the semiconductor body.
摘要:
A polyphase converter circuit having p≧3 phases (R, Y, B) and a converter circuit element provided for each phase (R, Y, B) is specified, each converter circuit element having a rectifier unit, a DC voltage circuit which is connected to the rectifier unit and an inverter unit which is connected to the DC voltage circuit. In addition, a first AC voltage output of each inverter unit forms a phase connection, and second AC voltage outputs of the inverter units are star-connected. In order to produce harmonics which are as low as possible with respect to the fundamental of the voltage and the current of an electrical AC voltage system which is connected on the input side to the converter circuit, n transformers are provided, each having a primary winding and m three-phase secondary windings, where n≧2 and m≧3. Furthermore, p sets of secondary windings are provided, each set of secondary windings being formed by in each case m p three-phase secondary windings of each transformer, and each set of secondary windings with the associated secondary windings being connected to the rectifier unit of a respective converter circuit element.