摘要:
In at least one embodiment of the optoelectronic semiconductor chip (1), the latter is based on a nitride material system and comprises at least one active quantum well (2). The at least one active quantum well (2) is designed to generate electromagnetic radiation when in operation. Furthermore, the at least one active quantum well (2) comprises N successive zones (A) in a direction parallel to a growth direction z of the semiconductor chip (1), N being a natural number greater than or equal to 2. At least two of the zones (A) of the active quantum well (2) have mutually different average indium contents c. Furthermore the at least one active quantum well (2) fulfills the condition: 40≦∫c(z)dz−2.5N−1.5∫dz≦80.
摘要:
A method for manufacturing an edge emitting semiconductor laser chip, which has a carrier substrate, an interlayer arranged between the carrier substrate and a component structure of the edge emitting semiconductor laser chip. The interlayer is adapted to provide adhesion between the carrier substrate and the component structure. The component structure has an active zone provided for generating radiation.
摘要:
An optoelectronic component contains an epitaxial layer sequence (6) based on a nitride compound semiconductor having an active layer (4) and, wherein the epitaxial growth substrate (1) comprises Al1-xGaxN, where 0
摘要翻译:光电子部件包含基于具有有源层(4)的氮化物半导体的外延层序列(6),并且其中外延生长衬底(1)包括Al 1-x Ga x N,其中0
摘要:
What is specified is an edge emitting semiconductor laser chip comprising a carrier substrate (1), an interlayer (2) promoting adhesion between the carrier substrate (1) and a component structure (50) of the edge emitting semiconductor laser chip, and the component structure (50) comprising an active zone (5) provided for generating radiation.
摘要:
A composite substrate (1) comprising a substrate body (2) and a utility layer (31) fixed on the substrate body (2). A planarization layer (4) is arranged between the utility layer (31) and the substrate body (2). A method for producing a composite substrate (1) applies a planarization layer (4) on a provided utility substrate (3). The utility substrate (3) is fixed on a substrate body (2) for the composite substrate (1). The utility substrate (3) is subsequently separated, wherein a utility layer (31) of the utility substrate (3) remains for the composite substrate (1) on the substrate body (2).
摘要:
In at least one embodiment of the light source (1), the latter includes at least one semiconductor laser (2), which is designed to emit a primary radiation (P) of a wavelength of between 360 nm and 485 nm inclusive. Furthermore, the light source (1) comprises at least one conversion medium (3), which is arranged downstream of the semiconductor laser (2) and is designed to convert at least part of the primary radiation (P) into secondary radiation (S) of a different, greater wavelength than the primary radiation (P). The radiation (R) emitted by the light source (1) here displays an optical coherence length which amounts to at most 50 μm.
摘要:
An optoelectronic semiconductor component, comprising a carrier substrate, and an interlayer that mediates adhesion between the carrier substrate and a component structure. The component structure comprises an active layer provided for generating radiation, and a useful layer arranged between the interlayer and the active layer. The useful layer has a separating area remote from the carrier substrate.
摘要:
What is specified is an edge emitting semiconductor laser chip comprising a carrier substrate (1), an interlayer (2) promoting adhesion between the carrier substrate (1) and a component structure (50) of the edge emitting semiconductor laser chip, and the component structure (50) comprising an active zone (5) provided for generating radiation.
摘要:
An optoelectronic component contains an epitaxial layer sequence based on a nitride compound semiconductor having an active layer and an epitaxial growth substrate comprising Al1-xGaxN, where 0
摘要:
A semiconductor component includes a semiconductor body with a semiconductor layer sequence having an active region, provided for generating coherent radiation, and an indicator layer. With respect to an interface which delimits the semiconductor body in regions in a vertical direction, on that side of said interface which is remote from the active region, the semiconductor body has a web-like region extending in a vertical direction between the interface and a surface of the semiconductor body. The indicator layer has a material composition that differs from that of the material of the web-like region which adjoins the indicator layer. A distance between the indicator layer and the surface is at most of the same magnitude as a distance between the interface and the surface.