Abstract:
The present invention relates to physiological signal processing, and in particular to methods and systems for processing physiological signals to predict a fluid responsiveness of a patient. A medical monitor for monitoring a patient includes an input receiving a photoplethysmograph (PPG) signal representing light absorption by a patient's tissue. The monitor also includes a perfusion status indicator indicating a perfusion status of the PPG signal, and a fluid responsiveness predictor (FRP) calculator programmed to calculate an FRP value based on a respiratory variation of the PPG signal. The FRP calculator applies a correction factor based on the perfusion status indicator.
Abstract:
The present invention relates to the field of medical monitoring, and in particular non-contact, video-based monitoring of pulse rate, respiration rate, motion, and oxygen saturation. Systems and methods are described for capturing images of a patient, producing intensity signals from the images, filtering those signals to focus on a physiologic component, and measuring a vital sign from the filtered signals.
Abstract:
A system configured to monitor autoregulation includes a medical sensor configured to be applied to a patient and to generate a regional oxygen saturation signal. The system includes a controller having a processor configured to receive the regional oxygen saturation signal and a blood pressure signal and to determine a cerebral oximetry index (COx) based on the blood pressure signal and the regional oxygen saturation signal. The processor is also configured to apply a data clustering algorithm to cluster COx data points over a range of blood pressures, identify a first cluster of COx data points that corresponds to an intact autoregulation zone for the patient, and provide a first output indicative of the intact autoregulation zone for the patient.
Abstract:
A method for monitoring autoregulation includes, using a processor, receiving a blood pressure signal an oxygen saturation signal, and a regional oxygen saturation signal from a patient. The method also includes normalizing the regional oxygen saturation signal to correct for variation in the oxygen saturation signal based on a relationship between the oxygen saturation signal and the regional oxygen saturation signal. The method further includes determining a linear correlation between the blood pressure signal and the normalized regional oxygen saturation signal. The method still further includes providing a signal indicative of the patient's autoregulation status to an output device based on the linear correlation.
Abstract:
Methods and systems are provided for determining fluid responsiveness based on a physiological signal. The system may determine fluid responsiveness based on the physiological signal and receive or determine respiration information of the subject. The system may correct the fluid responsiveness based on the respiration information. In some embodiments, the system may determine a correction factor to correct the fluid responsiveness values based on a relationship between fluid responsiveness and the respiration information. In some embodiments, the system may correct the measured fluid responsiveness based on an error between the fluid responsiveness measure and another measure such as pulse pressure variation, where there is a relationship between the error and the respiration information.
Abstract:
An apnea analysis system may include a photoplethysmographic (PPG) sub-system, a breath detection sub-system, and an apnea analysis module. An apnea analysis system includes a photoplethysmographic (PPG) sub-system, a breath detection sub-system, and an apnea analysis module. The PPG sub-system is configured to be operatively connected to an individual and output a PPG signal from the individual. The breath detection sub-system is configured to be operatively connected to the individual and output a breath signal from the individual. The apnea analysis module is in communication with the PPG sub-system and the breath detection sub-system. The apnea analysis module analyzes the breath signal and a respiratory component of the PPG signal and, based on the analysis, identifies a presence of apnea, differentiates between obstructive apnea and central apnea, and provides an indication of the identified apnea.
Abstract:
The present invention relates to physiological signal processing, and in particular to methods and systems for processing physiological signals to predict a fluid responsiveness of a patient. A medical monitor for monitoring a patient includes an input receiving a photoplethysmograph (PPG) signal representing light absorption by a patient's tissue. The monitor also includes a perfusion status indicator indicating a perfusion status of the PPG signal, and a fluid responsiveness predictor (FRP) calculator programmed to calculate an FRP value based on a respiratory variation of the PPG signal. The FRP calculator applies a correction factor based on the perfusion status indicator.
Abstract:
A system for determining one or more respiratory parameters of an individual may include a blood flow detection device configured to detect a blood flow signal of the individual, a blood flow determination module configured to form a blood flow waveform based on the blood flow signal, and a respiratory parameter analysis module configured to analyze the blood flow waveform and determine the respiratory parameter(s) from an analysis of the blood flow waveform.
Abstract:
Certain embodiments of the present disclosure provide a system and method for determining a repetitive airflow reduction of an individual. The system may include a photoplethysmogram (PPG) detection module configured to detect a PPG signal of a patient. The PPG signal may include a pulsatile AC component superimposed on a DC baseline. The system may also include a PPG baseline analysis module configured to analyze the DC baseline of the PPG signal to detect one or more threshold crossings with respect to an acceptable threshold correlated to normal breathing. The system may also include a repetitive airflow reduction determination module configured to determine an occurrence of the repetitive airflow reduction through an analysis of the one or more threshold crossings.
Abstract:
A physiological monitoring system may use one or more characteristics of an ambient signal to determine a probe-off condition. A physiological sensor may be used to emit one or more wavelengths of light. A light signal may be received that includes an ambient light component and one or more components corresponding to the emitted light. One or more characteristics (e.g., baseline characteristics) of the ambient light component may be determined and compared to one or more thresholds. The system may determine whether the physiological sensor is properly positioned based on the comparison.