Abstract:
The Zea mays c.v. B73 Ubiquitin-1 (Z. mays c.v. B73 Ubi-1) promoter drives high levels of constitutive transgene expression in plants. Repeated use of the same Z. mays c.v. B73 Ubi-1 promoter in multi-gene constructs may also lead to gene silencing, thereby making transgenic products less efficacious. Provided are gene regulatory promoter elements, constructs, and methods for expressing a transgene in plant cells and/or plant tissues using gene regulatory elements from the Ubi-1 promoter of a different Zea species, Z. luxurians v2.
Abstract:
The subject disclosure relates in part to endpoint TaqMan® PCR assays for the detection and high throughput zygosity analysis of the fad-3c gene in canola. The subject disclosure further relates, in part, to the use of wild type DNA as a reference for use in determining zygosity. These and other related procedures can be used to uniquely identify the zygosity and variety of canola lines comprising the subject gene. The subject disclosure also provides related kits for determining zygosity from a sample of a canola plant or seed, for example.
Abstract:
Provided are constructs and methods for expressing a transgene in plant cells and/or plant tissues using Zea mays chlorophyll a/b binding gene regulatory elements.
Abstract:
The present disclosure relates to engineered zinc finger proteins that target genes in plants involved in fatty acid biosynthesis. Methods of using such zinc finger proteins in modulating gene expression, gene inactivation, and targeted gene modification are also provided.
Abstract:
Provided are constructs and methods for expressing multiple genes in plant cells and/or plant tissues using a disclosed bidirectional promoter from Brassica napus or Brassica bidirectional constitutive promoter (BBCP). The constructs provided comprise at least one such bi-directional promoter linked to multiple gene expression cassettes, wherein each of the gene expression cassettes comprises at least one transgene. In some embodiments, the constructs and methods provided allow expression of genes between two and twenty.
Abstract:
Provided are methods, vectors and gene constructs for enhancing expression of a recombinant nucleic acid sequence in transgenic plants and plant tissues. According to the present invention, nucleic acid sequences are obtained and/or derived from the 3′ untranslated regions of genes encoding ubiquitin proteins and engineered to flank respective portions of a selected coding region of a vector. The vector construct may be introduced into plants and/or plant tissues through conventional or gene targeting procedures, resulting in enhanced expression of the selected coding region. In some embodiments, the selected coding region is a chimeric gene or gene fragment expressing one or more proteins known to impart a level of insecticidal activity to a transgenic plant and/or plant tissue.
Abstract:
The present disclosure relates to engineered zinc finger proteins that target 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) genes in plants and methods of using such zinc finger proteins in modulating gene expression, gene inactivation, and targeted gene modification. In particular, the disclosure pertains to zinc finger nucleases for targeted cleavage and alteration of EPSPS genes.
Abstract:
Provided are constructs and methods for expressing multiple genes in plant cells and/or plant tissues. The constructs provided comprise at least one bi-directional promoter link to multiple gene expression cassettes. In some embodiments, the constructs and methods provided employ a bi-directional promoter based on a minimal core promoter element from a Zea mays Ubiquitin-1 gene, or a functional equivalent thereof. In some embodiments, the constructs and methods provided allow expression of genes between three and twenty.
Abstract:
The invention provides DNA compositions that relate to transgenic insect resistant maize plants. Also provided are assays for detecting the presence of the maize DAS-59122-7 event based on the DNA sequence of the recombinant construct inserted into the maize genome and the DNA sequences flanking the insertion site. Kits and conditions useful in conducting the assays are provided.