摘要:
A transistor structure is formed by providing a semiconductor substrate and providing a gate above the semiconductor substrate. The gate is separated from the semiconductor substrate by a gate insulating layer. A source and a drain are provided adjacent the gate to define a transistor channel underlying the gate and separated from the gate by the gate insulating layer. A barrier layer is formed by applying nitrogen or carbon on opposing outer vertical sides of the transistor channel between the transistor channel and each of the source and the drain. In each of the nitrogen and the carbon embodiments, the vertical channel barrier retards diffusion of the source/drain dopant species into the transistor channel. There are methods for forming the transistor structure.
摘要:
A transistor structure is formed by providing a semiconductor substrate and providing a gate above the semiconductor substrate. The gate is separated from the semiconductor substrate by a gate insulating layer. A source and a drain are provided adjacent the gate to define a transistor channel underlying the gate and separated from the gate by the gate insulating layer. A barrier layer is formed by applying nitrogen or carbon on opposing outer vertical sides of the transistor channel between the transistor channel and each of the source and the drain. In each of the nitrogen and the carbon embodiments, the vertical channel barrier retards diffusion of the source/drain dopant species into the transistor channel. There are methods for forming the transistor structure.
摘要:
A stress memorization technique (SMT) film is deposited over a semiconductor device. The SMT film is annealed with a low thermal budget anneal that is sufficient to create and transfer the stress of the SMT film to the semiconductor device. The SMT film is then removed. After the SMT film is removed, a second anneal is applied to the semiconductor device sufficiently long and at a sufficiently high temperature to activate dopants implanted for forming device source/drains. The result of this approach is that there is minimal gate dielectric growth in the channel along the border of the channel.
摘要:
A method for forming a semiconductor device is provided. The method includes forming a semiconductor layer. The method further includes forming a gate structure overlying the semiconductor layer. The method further includes forming a high-k sidewall spacer adjacent to the gate structure. The method further includes forming a recess in the semiconductor layer, the recess aligned to the high-k sidewall spacer. The method further includes forming an in-situ doped epitaxial material in the recess, the epitaxial material having a natural lattice constant different from a lattice constant of the semiconductor layer to create stress in a channel region of the semiconductor device.
摘要:
A semiconductor process and apparatus includes forming NMOS and PMOS transistors (24, 34) with enhanced hole mobility in the channel region of a transistor by selectively relaxing part of a biaxial-tensile strained semiconductor layer (90) in a PMOS device area (97) to form a relaxed semiconductor layer (91), and then epitaxially growing a bi-axially stressed silicon germanium channel region layer (22) prior to forming the NMOS and PMOS gate structures (26, 36) overlying the channel regions, and then depositing a contact etch stop layer (53-56) over the NMOS and PMOS gate structures. Embedded silicon germanium source/drain regions (84) may also be formed adjacent to the PMOS gate structure (70) to provide an additional uni-axial stress to the bi-axially stressed channel region.
摘要:
A method for forming a semiconductor device includes forming a recess in a source region and a recess in a drain region of the semiconductor device. The method further includes forming a first semiconductor material layer in the recess in the source region and a second semiconductor material layer in the recess in the drain region, wherein each of the first semiconductor material layer and the second semiconductor material layer are formed using a stressor material having a first ratio of an atomic concentration of a first element and an atomic concentration of a second element, wherein the first element is silicon and a first level of concentration of a doping material. The method further includes forming additional semiconductor material layers overlying the first semiconductor material layer and the second semiconductor material layer that have a different ratio of the atomic concentration of the first element and the second element.
摘要:
Different circuit-based implementations of stochastic anti-windup PI controllers are provided for a motor drive controller system. The designs can be implemented in a Field Programmable Gate Arrays (FPGA) device. The anti-windup PI controllers are implemented stochastically so as to enhance the computational capability of FPGA.
摘要:
A method for forming a semiconductor device is provided. The method includes forming a semiconductor layer. The method further includes forming a gate structure overlying the semiconductor layer. The method further includes forming a high-k sidewall spacer adjacent to the gate structure. The method further includes forming a recess in the semiconductor layer, the recess aligned to the high-k sidewall spacer. The method further includes forming an in-situ doped epitaxial material in the recess, the epitaxial material having a natural lattice constant different from a lattice constant of the semiconductor layer to create stress in a channel region of the semiconductor device.
摘要:
A method for forming a semiconductor device includes providing a substrate and forming a p-channel device and an n-channel device, each of the p-channel device and the n-channel device comprising a source, a drain, and a gate, the p-channel device having a first sidewall spacer and the n-channel device having a second sidewall spacer. The method further includes forming a liner and forming a tensile stressor layer over the liner and removing a portion of the tensile stressor layer from a region overlying the p-channel device. The method further includes transferring a stress characteristic of an overlying portion of a remaining portion of the tensile stressor layer to a channel of the n-channel device. The method further includes using the remaining portion of the tensile stressor layer as a hard mask, forming a first recess and a second recess adjacent the gate of the p-channel device.
摘要:
A method for forming a semiconductor device includes forming a recess in a source region and a recess in a drain region of the semiconductor device. The method further includes forming a first semiconductor material layer in the recess in the source region and a second semiconductor material layer in the recess in the drain region, wherein each of the first semiconductor material layer and the second semiconductor material layer are formed using a stressor material having a first ratio of an atomic concentration of a first element and an atomic concentration of a second element, wherein the first element is silicon and a first level of concentration of a doping material. The method further includes forming additional semiconductor material layers overlying the first semiconductor material layer and the second semiconductor material layer that have a different ratio of the atomic concentration of the first element and the second element.