eFuse containing SiGe stack
    42.
    发明授权
    eFuse containing SiGe stack 有权
    eFuse包含SiGe堆栈

    公开(公告)号:US08004059B2

    公开(公告)日:2011-08-23

    申请号:US11622616

    申请日:2007-01-12

    IPC分类号: H01L23/525

    摘要: An eFuse, includes: a substrate and an insulating layer disposed on the substrate; a first layer including a single crystal or polycrystalline silicon disposed on the insulating layer; a second layer including a single crystal or polycrystalline silicon germanium disposed on the first layer, and a third layer including a silicide disposed on the second layer. The Ge has a final concentration in a range of approximately five percent to approximately twenty-five percent.

    摘要翻译: eFuse包括:衬底和设置在衬底上的绝缘层; 包括设置在所述绝缘层上的单晶或多晶硅的第一层; 包括设置在第一层上的单晶或多晶硅锗的第二层,以及包括设置在第二层上的硅化物的第三层。 Ge的终浓度范围约为百分之五至百分之二十五。

    Semiconductor nanowire with built-in stress

    公开(公告)号:US07989233B2

    公开(公告)日:2011-08-02

    申请号:US13004340

    申请日:2011-01-11

    IPC分类号: H01L29/06

    摘要: A semiconductor nanowire having two semiconductor pads on both ends is suspended over a substrate. Stress-generating liner portions are formed over the two semiconductor pads, while a middle portion of the semiconductor nanowire is exposed. A gate dielectric and a gate electrode are formed over the middle portion of the semiconductor nanowire while the semiconductor nanowire is under longitudinal stress due to the stress-generating liner portions. The middle portion of the semiconductor nanowire is under a built-in inherent longitudinal stress after removal of the stress-generating liners because the formation of the gate dielectric and the gate electrode locks in the strained state of the semiconductor nanowire. Source and drain regions are formed in the semiconductor pads to provide a semiconductor nanowire transistor. A middle-of-line (MOL) dielectric layer may be formed directly on the source and drain pads.

    FORMATION OF IMPROVED SOI SUBSTRATES USING BULK SEMICONDUCTOR WAFERS
    44.
    发明申请
    FORMATION OF IMPROVED SOI SUBSTRATES USING BULK SEMICONDUCTOR WAFERS 有权
    使用块状半导体波形形成改进的SOI衬底

    公开(公告)号:US20110147885A1

    公开(公告)日:2011-06-23

    申请号:US13037608

    申请日:2011-03-01

    IPC分类号: H01L23/58

    CPC分类号: H01L21/764 H01L21/76283

    摘要: The present invention relates to a semiconductor-on-insulator (SOI) substrate having one or more device regions. Each device region comprises at least a base semiconductor substrate layer and a semiconductor device layer with a buried insulator layer located therebetween, while the semiconductor device layer is supported by one or more vertical insulating pillars. The vertical insulating pillars each preferably has a ledge extending between the base semiconductor substrate layer and the semiconductor device layer. The SOI substrates of the present invention can be readily formed from a precursor substrate structure with a “floating” semiconductor device layer that is spaced apart from the base semiconductor substrate layer by an air gap and is supported by one or more vertical insulating pillars. The air gap is preferably formed by selective removal of a sacrificial layer located between the base semiconductor substrate layer and the semiconductor device layer.

    摘要翻译: 本发明涉及具有一个或多个器件区域的绝缘体上半导体(SOI)衬底。 每个器件区域至少包括基底半导体衬底层和其间设置有掩埋绝缘体层的半导体器件层,而半导体器件层由一个或多个垂直绝缘柱支撑。 垂直绝缘柱各自优选地具有在基底半导体衬底层和半导体器件层之间延伸的凸缘。 本发明的SOI衬底可以容易地由具有“浮动”半导体器件层的前体衬底结构形成,半导体器件层通过气隙与基底半导体衬底层间隔开并由一个或多个垂直绝缘柱支撑。 气隙优选通过选择性地去除位于基底半导体衬底层和半导体器件层之间的牺牲层来形成。

    Semiconductor structure with enhanced performance using a simplified dual stress liner configuration
    46.
    发明授权
    Semiconductor structure with enhanced performance using a simplified dual stress liner configuration 失效
    使用简化的双重应力衬垫配置提高性能的半导体结构

    公开(公告)号:US07675118B2

    公开(公告)日:2010-03-09

    申请号:US11468958

    申请日:2006-08-31

    IPC分类号: H01L27/12

    摘要: A semiconductor structure including an nFET having a fully silicided gate electrode wherein a new dual stress liner configuration is used to enhance the stress in the channel region that lies beneath the gate electrode is provided. The new dual stress liner configuration includes a first stress liner that has an upper surface that is substantially planar with an upper surface of a fully silicided gate electrode of the nFET. In accordance with the present invention, the first stress liner is not present atop the nFET including the fully silicided gate electrode. Instead, the first stress liner of the present invention partially wraps around, i.e., surrounds the sides of, the nFET with the fully silicided gate electrode. A second stress liner having an opposite polarity as that of the first stress liner (i.e., of an opposite stress type) is located on the upper surface of the first stress liner as well as atop the nFET that contains the fully silicided FET. In accordance with the present invention, the first stress liner is a tensile stress liner and the second stress liner is a compressive stress liner.

    摘要翻译: 提供了包括具有完全硅化栅电极的nFET的半导体结构,其中使用新的双应力衬垫配置来增强位于栅电极下方的沟道区中的应力。 新的双应力衬垫构造包括第一应力衬垫,其具有与nFET的完全硅化栅电极的上表面基本上平面的上表面。 根据本发明,第一应力衬垫不存在于包括全硅化物栅电极的nFET顶部。 相反,本发明的第一应力衬垫部分地包裹着nFET的侧面,即用完全硅化的栅电极包围nFET。 具有与第一应力衬垫相反极性(即相反应力类型)的第二应力衬垫位于第一应力衬垫的上表面上以及位于包含完全硅化FET的nFET顶上。 根据本发明,第一应力衬垫是拉伸应力衬垫,第二应力衬垫是压应力衬垫。

    METHOD AND STRUCTURE FOR IMPROVING DEVICE PERFORMANCE VARIATION IN DUAL STRESS LINER TECHNOLOGY
    48.
    发明申请
    METHOD AND STRUCTURE FOR IMPROVING DEVICE PERFORMANCE VARIATION IN DUAL STRESS LINER TECHNOLOGY 有权
    改进双应力衬管技术中设备性能变化的方法与结构

    公开(公告)号:US20090079011A1

    公开(公告)日:2009-03-26

    申请号:US12328358

    申请日:2008-12-04

    IPC分类号: H01L27/088 H01L21/311

    摘要: A method and semiconductor structure that overcome the dual stress liner boundary problem, without significantly increasing the overall size of the integrated circuit, are provided. In accordance with the present invention, the dual stress liner boundary or gap therebetween is forced to land on a neighboring dummy gate region. By forcing the dual stress liner boundary or gap between the liners to land on the dummy gate region, the large stresses associated with the dual stress liner boundary or gap are transferred to the dummy gate region, not the semiconductor substrate. Thus, the impact of the dual stress liner boundary on the nearest neighboring FET is reduced. Additionally, benefits of device variability and packing density are achieved utilizing the present invention.

    摘要翻译: 提供了克服双应力衬垫边界问题的方法和半导体结构,而不显着增加集成电路的总体尺寸。 根据本发明,它们之间的双应力衬垫边界或间隙被迫在邻近的虚拟栅极区域上着陆。 通过迫使衬垫之间的双重应力衬垫边界或间隙落在虚拟栅极区上,与双应力衬垫边界或间隙相关联的大应力被传递到虚拟栅极区而不是半导体衬底。 因此,双应力衬垫边界对最近的相邻FET的影响减小。 此外,利用本发明实现了装置可变性和包装密度的益处。

    Formation of improved SOI substrates using bulk semiconductor wafers
    50.
    发明授权
    Formation of improved SOI substrates using bulk semiconductor wafers 有权
    使用块状半导体晶片形成改进的SOI衬底

    公开(公告)号:US07452784B2

    公开(公告)日:2008-11-18

    申请号:US11420279

    申请日:2006-05-25

    IPC分类号: H01L21/76

    CPC分类号: H01L21/764 H01L21/76283

    摘要: The present invention relates to a semiconductor-on-insulator (SOI) substrate having one or more device regions. Each device region comprises at least a base semiconductor substrate layer and a semiconductor device layer with a buried insulator layer located therebetween, while the semiconductor device layer is supported by one or more vertical insulating pillars. The vertical insulating pillars each preferably has a ledge extending between the base semiconductor substrate layer and the semiconductor device layer. The SOI substrates of the present invention can be readily formed from a precursor substrate structure with a “floating” semiconductor device layer that is spaced apart from the base semiconductor substrate layer by an air gap and is supported by one or more vertical insulating pillars. The air gap is preferably formed by selective removal of a sacrificial layer located between the base semiconductor substrate layer and the semiconductor device layer.

    摘要翻译: 本发明涉及具有一个或多个器件区域的绝缘体上半导体(SOI)衬底。 每个器件区域至少包括基底半导体衬底层和其间设置有掩埋绝缘体层的半导体器件层,而半导体器件层由一个或多个垂直绝缘柱支撑。 垂直绝缘柱各自优选地具有在基底半导体衬底层和半导体器件层之间延伸的凸缘。 本发明的SOI衬底可以容易地由具有“浮动”半导体器件层的前体衬底结构形成,半导体器件层通过气隙与基底半导体衬底层间隔开并由一个或多个垂直绝缘柱支撑。 气隙优选通过选择性地去除位于基底半导体衬底层和半导体器件层之间的牺牲层来形成。