Abstract:
A field effect transistor including a dielectric layer on a substrate, a nano-structure material (NSM) layer on the dielectric layer, a source electrode and a drain electrode formed on the NSM layer, a gate dielectric formed on at least a portion of the NSM layer between the source electrode and the drain electrode, a T-shaped gate electrode formed between the source electrode and the drain electrode, where the NSM layer forms a channel of the FET, and a doping layer on the NSM layer extending at least from the sidewall of the source electrode to a first sidewall of the gate dielectric, and from a sidewall of the drain electrode to a second sidewall of the gate dielectric.
Abstract:
A method of forming an electrical device that includes forming a gate dielectric layer over a gate electrode, forming source and drain electrodes on opposing sides of the gate electrode, wherein one end of the source and drain electrodes provides a coplanar surface with the gate dielectric, and positioning a 1D or 2D nanoscale material on the coplanar surface to provide the channel region of the electrical device.
Abstract:
An Integrated Circuit (IC) chip with a lab-on-a-chip, a method of manufacturing the lab-on-a-chip and a method of using the lab-on-a-chip for fluid flow analysis in physical systems through combination with computer modeling. The lab-on-a-chip includes cavities in a channel layer and a capping layer, preferably transparent, covering the cavities. Gates control two dimensional (2D) lattice structures acting as heaters, light sources and/or sensors in the cavities, or fluid channels. The gates and two dimensional (2D) lattice structures may be at the cavity bottoms or on the capping layer. Wiring connects the gates and the 2D lattice structures externally.
Abstract:
An Integrated Circuit (IC) chip with a lab-on-a-chip, a method of manufacturing the lab-on-a-chip and a method of using the lab-on-a-chip for fluid flow analysis in physical systems through combination with computer modeling. The lab-on-a-chip includes cavities in a channel layer and a capping layer, preferably transparent, covering the cavities. Gates control two dimensional (2D) lattice structures acting as heaters, light sources and/or sensors in the cavities, or fluid channels. The gates and two dimensional (2D) lattice structures may be at the cavity bottoms or on the capping layer. Wiring connects the gates and the 2D lattice structures externally.
Abstract:
Provided are embodiments for a computer-implemented method, system, and device for tracking multiphase flow in a microfluidic device. Embodiments include receiving first readings from a first sensor of the microfluidic device, the first reading representing a detection of a fluid at an interface between the fluid and the first sensor, and receiving second readings from a second sensor of the microfluidic device, the second readings representing a detection of the fluid at an interface between the fluid and the second sensor, wherein the first sensor is located at a distance from the second sensor. Embodiments also include calculating a flow speed of the fluid in the microfluidic device based at least in part on a difference of time between the detections by the first sensor and the second sensor, and the distance between the first sensor and the second sensor.
Abstract:
Aspects of the invention include determining, by a first AFM tip, a first snap-off force of a solid surface immersed in a first fluid, determining, by a second AFM tip, a second snap-off force, determining, by a third AFM tip, a third snap-off force, determining, by the first AFM tip, a fourth snap-off force of a droplet of the first fluid immersed in the second fluid on the solid surface, determining, by the second AFM tip, a fifth snap-off force, determining, by the third AFM tip, a sixth snap-off force, determining a first capillary force for first AFM tip and first droplet based on first snap-off force and fourth snap-off force, determining a second capillary force for second AFM tip and first droplet and a third capillary force for third AFM tip and first droplet, and determining interfacial tension between first fluid and second fluid based on the capillary forces.
Abstract:
Provided are embodiments for a computer-implemented method, system, and device for tracking multiphase flow in a microfluidic device. Embodiments include receiving first readings from a first sensor of the microfluidic device, the first reading representing a detection of a fluid at an interface between the fluid and the first sensor, and receiving second readings from a second sensor of the microfluidic device, the second readings representing a detection of the fluid at an interface between the fluid and the second sensor, wherein the first sensor is located at a distance from the second sensor. Embodiments also include calculating a flow speed of the fluid in the microfluidic device based at least in part on a difference of time between the detections by the first sensor and the second sensor, and the distance between the first sensor and the second sensor.
Abstract:
Provided are embodiments for a system for determining wettability of fluid-fluid-solid systems. The system includes a confocal optical microscope and a storage medium, the storage medium being coupled to a processor. The processor is configured to perform a scan of a sample of a multi-phase system using the confocal optical microscope, wherein a phase defines a structural phase of matter, identify each phase of the sample, and measure a three-phase contact line for the sample, wherein the three-phase contact line is along an interface of first fluid and a second fluid and an interface of a second fluid and solid. The processor is configured to obtain one or more characteristics from the sample based at least in part on the three-phase contact line, and provide the one or more characteristics for the sample. Also provided are embodiments for a method for determining the wettability of fluid-fluid-solid systems.
Abstract:
Provided are embodiments for a system for determining wettability of fluid-fluid-solid systems. The system includes a confocal optical microscope and a storage medium, the storage medium being coupled to a processor. The processor is configured to perform a scan of a sample of a multi-phase system using the confocal optical microscope, wherein a phase defines a structural phase of matter, identify each phase of the sample, and measure a three-phase contact line for the sample, wherein the three-phase contact line is along an interface of first fluid and a second fluid and an interface of a second fluid and solid. The processor is configured to obtain one or more characteristics from the sample based at least in part on the three-phase contact line, and provide the one or more characteristics for the sample. Also provided are embodiments for a method for determining the wettability of fluid-fluid-solid systems.
Abstract:
A method of positioning nanomaterials includes patterning guiding dielectric features from a single layer of guiding dielectric material, and producing an electric field by at least one electrode disposed on a substrate that is attenuated through the guiding dielectric features to create an attractive dielectrophoretic force that guides at least one nanostructure abutting the guiding dielectric features to be positioned on a deposition surface of the substrate.