Abstract:
Disclosed is a semiconductor chip having a dual damascene insulated wire and insulated through-substrate via (TSV) structure and methods of forming the chip. The methods incorporate a dual damascene technique wherein a trench and via opening are formed in dielectric layers above a substrate such that the trench is above a first via and the via opening is positioned adjacent to the first via and extends vertically from the trench and into the substrate. Dielectric spacers are formed on the sidewalls of the trench and via opening. A metal layer is deposited to form an insulated wire in the trench and an insulated TSV in the via opening. Thus, the insulated wire electrically connects the insulated TSV to the first via and, thereby to an on-chip device or lower metal level wire below. Subsequently, the substrate is thinned to expose the insulated TSV at the bottom surface of the substrate.
Abstract:
A semiconductor fabrication is described, wherein a MOS device and a MEMS device is fabricated simultaneously in the BEOL process. A silicon layer is deposited and etched to form a silicon film for a MOS device and a lower silicon sacrificial film for a MEMS device. A conductive layer is deposited atop the silicon layer and etched to form a metal gate and a first upper electrode. A dielectric layer is deposited atop the conductive layer and vias are formed in the dielectric layer. Another conductive layer is deposited atop the dielectric layer and etched to form a second upper electrode and three metal electrodes for the MOS device. Another silicon layer is deposited atop the other conductive layer and etched to form an upper silicon sacrificial film for the MEMS device. The upper and lower silicon sacrificial films are then removed via venting holes.
Abstract:
Disclosed are an interdigitated capacitor and an interdigitated vertical native capacitor, each having a relatively low (e.g., zero) net coefficient of capacitance with respect to a specific parameter. For example, the capacitors can have a zero net linear temperature coefficient of capacitance (Tcc) to limit capacitance variation as a function of temperature or a zero net quadratic voltage coefficient of capacitance (Vcc2) to limit capacitance variation as a function of voltage. In any case, each capacitor can incorporate at least two different plate dielectrics having opposite polarity coefficients of capacitance with respect to the specific parameter due to the types of dielectric materials used and their respective thicknesses. As a result, the different dielectric plates will have opposite effects on the capacitance of the capacitor that cancel each other out such that the capacitor has a zero net coefficient of capacitance with respect to specific parameter.
Abstract:
A metal-insulator-metal (MIM) capacitor using barrier layer metallurgy and methods of manufacture are disclosed. The method includes forming a bottom plate of a metal-insulator-metal (MIM) capacitor and a bonding pad using a single masking process. The method further includes forming a MIM dielectric on the bottom plate. The method further includes forming a top plate of the MIM capacitor on the MIM dielectric. The method further includes forming a solder connection on the bonding pad.
Abstract:
Device structures, design structures, and fabrication methods for a varactor. The device structure includes a first electrode formed on a dielectric layer, and a semiconductor body formed on the first electrode. The semiconductor body is comprised of a silicon-containing semiconductor material in an amorphous state or a polycrystalline state. The device structure further includes an electrode insulator formed on the semiconductor body and a second electrode formed on the electrode insulator.
Abstract:
Various embodiments include interconnect structures and methods of forming such structures. The interconnect structures can include a composite copper wire which includes at least two distinct copper sections. The uppermost copper section can have a thickness of approximately 1 micrometer or less, which inhibits surface roughening in that uppermost section, and helps to enhance cap adhesion with overlying layers.
Abstract:
Methods for planarizing layers of a material, such as a dielectric, and interconnect structures formed by the planarization methods. The method includes depositing a first dielectric layer on a top surface of multiple conductive features and on a top surface of a substrate between the conductive features. A portion of the first dielectric layer is selectively removed from the top surface of at least one of the conductive features without removing a portion the first dielectric layer that is between the conductive features. A second dielectric layer is formed on the top surface of the at least one of the conductive features and on a top surface of the first dielectric layer, and a top surface of the second dielectric layer is planarized. A layer operating as an etch stop is located between the top surface of at least one of the conductive features and the second dielectric layer.
Abstract:
An integrated circuit (IC) including a set of isolated wire structures disposed within a layer of the IC, methods of manufacturing the same and design structures are disclosed. The method includes forming adjacent wiring structures on a same level, with a space therebetween. The method further includes forming a capping layer over the adjacent wiring structures on the same level, including on a surface of a material between the adjacent wiring structures. The method further includes forming a photosensitive material over the capping layer. The method further includes forming an opening in the photosensitive material between the adjacent wiring structures to expose the capping layer. The method further includes removing the exposed capping layer.