摘要:
An SOI multiple FET structure is provided that comprises a substrate having a substrate layer on an insulator layer. The SOI multiple FET structure includes distal diffusion regions in the substrate layer and a central diffusion region in the substrate layer. The central diffusion region has a width and extends from a surface of the substrate layer downward into contact with the insulator layer along a portion of the width and extends only partially into the substrate layer along another portion of the width. The SOI multiple FET structure also includes a pair of gates on the surface of the substrate layer each overlapping one of the distal diffusion regions and the central diffusion region; and a pair of body regions in the substrate layer each under one of the gates for forming a channel between the one of the distal diffusion regions and the central diffusion region. The body regions are in electrical communication under the another portion of the width of the central diffusion region. Methods for forming the SOI multiple FET structure are also provided.
摘要:
A method of fabricating a semiconductor device comprising: forming a trench on the face of a silicon substrate of a first conductivity type; depositing a conformal silicon layer of a second conductivity type into the trench; etching away the silicon layer of a second conductivity type selectively to leave portions of the silicon layer in the trench; annealing to drive dopant from the portions of the silicon layer through the walls of the trench into adjacent areas of the silicon substrate; and forming a gate structure in the trench, and source and drain diffusion regions in said silicon substrate on opposing sides of said gate structure.
摘要:
A hybrid orientation semiconductor structure and method of forming the same. The structure includes (a) a semiconductor substrate comprising a first semiconductor material having a first lattice orientation; (b) a back gate region on the semiconductor substrate; (c) a back gate dielectric layer on the back gate region; (d) a semiconductor region on the back gate dielectric layer, wherein the semiconductor region is electrically insulated from the back gate region by the back gate dielectric layer, and wherein the semiconductor region comprises a second semiconductor material having a second lattice orientation different from the first lattice orientation; and (e) a field effect transistor (FET) formed on the semiconductor region, wherein changing a voltage potential applied to the back gate region causes a change in a threshold voltage of the FET.
摘要:
A decoupling capacitor and methods for forming the same are provided. In a first aspect, the decoupling capacitor is formed during a process for forming first and second type FETs on a common substrate that comprises a plurality of implant steps for doping channels and diffusions of the first and second type FETs. In a second aspect, a method is provided for forming the novel decoupling capacitor that includes the steps of forming a mandrel layer on a substrate, including forming openings in the mandrel layer and disposing a first type dopant into the substrate through the openings. Thereafter, an epitaxial layer is formed in the openings on the substrate, an insulator layer is formed in the openings on the epitaxial layer and a gate is formed in the openings on the insulator layer. The mandrel layer is removed and the first type dopant is disposed into the substrate abutting the first type dopant in the substrate that was disposed through the openings. During this step the first type dopant is disposed into the gate. The substrate having the first type dopant comprises one terminal of the capacitor and the gate comprises another terminal of the capacitor.
摘要:
A method of fabricating a high voltage fully depleted silicon-on-insulator (FD SOI) transistor, the FD SOI transistor having a structure including a region within a body on which a gate structure is disposed. The region includes a channel separating the source region and the drain region. Above the source region is disposed a carrier recombination element, which abuts the gate structure and is electrically connected to the region via the channel. The drain region is lightly doped and ballasted to increase breakdown voltage. The FD SOI may be fabricated by forming a body with a thin silicon layer disposed on a buried oxide (BOX). Alternatively, the body may be formed using a partially depleted (PD) SOI where the region formed therein has a reduced thickness in comparison to the overall thickness of the PD SOI.
摘要:
A method and structure for an integrated circuit structure that utilizes complementary fin-type field effect transistors (FinFETs) is disclosed. The invention has a first-type of FinFET which includes a first fin, and a second-type of FinFET which includes a second fin running parallel to the first fin. The invention also has an insulator fin positioned between the source/drain regions of the first first-type of FinFET and the second-type of FinFET. The insulator fin has approximately the same width dimensions as the first fin and the second fin, such that the spacing between the first-type of FinFET and the second-type of FinFET is approximately equal to the width of one fin. The invention also has a common gate formed over channel regions of the first-type of FinFET and the second-type of FinFET. The gate includes a first impurity doping region adjacent the first-type of FinFET and a second impurity doping region adjacent the second-type of FinFET. The differences between the first impurity doping region and the second impurity doping region provide the gate with different work functions related to differences between the first-type of FinFET and the second-type of FinFET. The first fin and the second fin have approximately the same width.
摘要:
A semiconductor device and method of manufacturing is disclosed which has a tensile and/or compressive strain applied thereto. The method includes forming at least one trench in a material; and filling the at least one trench by an oxidation process thereby forming a strain concentration in a channel of a device. The structure includes a gate structure having a channel and a first oxidized trench on a first of the channel, respectively. The first oxidized trench creates a strain component in the channel to increase device performance.
摘要:
The disclosure relates generally to nano-filters and methods of forming same, and methods of filtration. The nano-filter includes a substrate and at least one nanowire structure located between an inlet and an outlet. The nanowire structure may include a plurality of vertically stacked horizontal nanowires.
摘要:
Transmission gates, methods of fabricating transmission gates, and design structures for a transmission gate. The transmission gate includes an n-channel field effect transistor characterized by terminals that are asymmetrically doped and a p-channel field effect transistor characterized by terminals that are asymmetrically doped.
摘要:
A field effect device includes a channel region disposed on a silicon on insulator (SOI) layer, a gate portion disposed on the channel region, a source region disposed on the SOI layer and connected to the channel region having a horizontal surface and a vertical surface, the vertical surface arranged perpendicular to a linear axis of the device, a silicide portion that includes the horizontal surface and vertical surface of the source region, a contact including a metallic material in contact with the horizontal surface and vertical surface of the source region, and a drain region connected to the channel region disposed on the SOI layer.